Dear friends,
Many AI systems have been built using data scraped from the internet. Indeed, even the cornerstone dataset for computer vision research, ImageNet, was built using images taken from the public internet. With the rise of data-centric AI, access to good data continues to grow in importance to developers.
The U.S. court found that scraping data that is publicly accessible doesn’t violate the Computer Fraud and Abuse Act. This is not the same as allowing unfettered access to web scrapers. Data held behind a login wall or accessible only after agreeing to restrictive terms of service may be a different matter. (Disclaimer: Please don’t construe anything I say as legal advice.)
Keep learning! Andrew
NewsAI War Chest GrowsWestern nations are making a substantial investment in AI. What’s new: The North Atlantic Treaty Organization (NATO), which includes the United States, Canada, and much of Europe, announced a €1 billion venture capital fund that will focus on technologies including AI. The move adds to the growing momentum behind AI for warfare.
Behind the news: NATO members recently boosted their individual AI budgets as well.
Why it matters: Besides autonomous weaponry, AI has numerous military applications that confer strategic and tactical advantages. In the Russian invasion of Ukraine alone, AI has been used to identify enemy soldiers, combat propaganda, and intercept communications.
Auto DiagnosisA drive-through system automatically inspects vehicles for dents, leaks, and low tire pressure. What’s new: General Motors is giving its dealerships an option to install a visual inspection system from UVeye. Volvo struck a similar deal with the Tel Aviv startup in March.
Behind the news: General Motors and Volvo separately invested undisclosed sums in UVeye, as have Honda, Toyota, and Škoda, a Volkswagen subsidiary. Several General Motors dealers around the U.S. already use its technology for vehicle checkups; the new deal will make it available to all 4,000. Volvo uses UVeye scanners on its assembly lines and offers incentives to dealerships to use them as well.
A MESSAGE FROM DEEPLEARNING.AILaunching today: Course 3 of the Machine Learning Specialization, “Unsupervised Learning, Recommender Systems, and Reinforcement Learning.” Learn to train models using unsupervised clustering, generate recommendations via collaborative filtering, and build deep reinforcement learning models! Enroll to #BreakIntoAI
On the BallNeural networks are spotting up-and-coming players for some of the best teams in football (known as soccer in the United States). What’s new: AiSCOUT uses computer vision to grade amateur footballers and recommends those who score highest to representatives of professional teams, Forbes reported. How it works: Amateurs upload videos of themselves performing eight drills such as passing, shooting, and dribbling around cones. AiSCOUT scores the performance on a scale of 0 to 2 relative to others it has evaluated (a score of 1.7 might prompt an in-person trial with a top team).
Behind the news: Machine learning is being used to improve performance in a wide range of sports.
Why it matters: Talent scouts have been obsessed with data since the days of pencil and paper. Machine learning can help clubs to cast a wider net and give far-flung aspirants a shot at going pro. We’re thinking: We get a kick out of this app!
Humanized Training for Robot ArmsRobots trained via reinforcement learning usually study videos of robots performing the task at hand. A new approach used videos of humans to pre-train robotic arms. What’s new: UC Berkeley researchers led by Tete Xiao and Ilija Radosavovic showed that real-world videos with patches missing were better than images of robot arms for training a robot to perform motor-control tasks. They call their method Masked Visual Pretraining (MVP). They also built a benchmark suite of tasks for robot arms. Key insight: One way to train a robot arm involves two models: one that learns to produce representations of visual input and a much smaller one, the controller, that uses those representations to drive the arm. Typically, both models learn from images of a robotic arm. Surprisingly, pretraining the vision model on images of humans performing manual tasks not only results in better representations but also reduces the cost of adapting the system to new tasks. Instead of retraining the whole system on images of a new task, object, or environment, the controller alone can be fine-tuned. How it works: The authors pretrained a visual model to reproduce images that had been partly masked by obscuring a rectangular portion at random. The pretraining set was drawn from three video datasets that include clips of humans performing manual actions such as manipulating a Rubik’s Cube. They used the resulting representations to fine-tune controllers that moved a robot arm in a simulation. They fine-tuned a separate controller for each of four tasks (opening a cabinet door as well as reaching, picking up, and relocating objects of different colors, shapes, and sizes) for each of two types of arm (one with a gripper, the other with four fingers).
Results: In all eight tasks, the authors’ approach outperformed two state-of-the-art methods that train the visual and controller models on images of robots for training. The authors compared their representations to those produced by a transformer trained on ImageNet in supervised fashion. In seven tasks, the controller that used their representations outperformed one that used the supervised transformer’s representations. In the eighth, it performed equally well. In tasks that required a four-fingered arm to pick up an object, the authors’ approach achieved a success rate of 80 percent versus 60 percent. Yes, but: The authors didn’t compare masked pretraining on images of humans with masked pretraining on images of robots. Thus, it’s not clear whether their method outperformed the baseline due to their choice of training dataset or pretraining technique. Why it matters: Learning from more varied data is a widely used approach to gaining skills that generalize across tasks. Masked pretraining of visual models has improved performance in video classification, image generation, and other tasks. The combination looks like a winner. We’re thinking: Variety of data is important, but so is its relation to the task at hand. ImageNet probably is more varied than the authors’ training set of humans performing manual actions, but it’s unrelated to tasks performed by robot arms. So it stands to reason that the authors’ dataset was more effective.
Work With Andrew Ng
Tech Lead: Workhelix, an AI Fund portfolio company that provides data and tools for companies to manage human capital, seeks a tech lead to produce scalable software solutions for enterprise customers. You'll be part of a co-founding team responsible for the full software development life cycle. Apply here
Senior IT Manager: Woebot Health is looking for a senior IT manager to support onboarding, maintenance, and offboarding. The ideal candidate can work with engineering to ensure that technology needed to build, maintain, and run products is operational and integrated seamlessly into the overall Woebot Health IT infrastructure. Apply here Product Marketing Manager: DeepLearning.AI seeks a product marketing manager who can bring its products to life across multiple channels and platforms including social, email, and the web. The ideal candidate is a creative self-starter who can work collaboratively and independently to execute new ideas and projects, thrives in a fast-paced environment, and has a passion for AI and/or education. Apply here
Data Engineer (Latin America): Factored seeks top data engineers with experience in data structures and algorithms, operating systems, computer networks, and object-oriented programming. Experience with Python and excellent English skills are required. Apply here
Subscribe and view previous issues here.
Thoughts, suggestions, feedback? Please send to thebatch@deeplearning.ai. Avoid our newsletter ending up in your spam folder by adding our email address to your contacts list.
|