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CHAPTER 

Distributed Representations

G. E. HINTON, J. L. McCLELLAND , and D. E. RUMELHART

Given a network of simple computing elements and some entities to
be represented , the most straightforward scheme is to use one comput-
ing element for each entity. This is called a local representation. It is
easy to understand and easy to implement because the structure of the
physical network mirrors the structure of the knowledge it contains.
The naturalness and simplicity of this relationship between the
knowledge and the hardware that implements it have led many people
to simply assume that local representations are the best way to use
parallel hardware. There are , of course , a wide variety of more compli-
cated implementations in which there is no one-to-one correspondence
between concepts and hardware units, but these implementations are
only worth considering if they lead to increased efficiency or ,
interesting emergent properties that cannot be conveniently achieved
using local representations.

This chapter describes one type of representation that is less familiar
and harder to think about than local representations. Each entity is
represented by a pattern of activity distributed over many computing
elements, and each computing element is involved in representing
many different entities. The strength of this more complicated kind of
representation does not lie in its notational convenience or its ease of
implementation in a conventional computer, but rather in the efficiency
with which it makes use of the processing abilities of networks of sim-
ple , neuron-like computing elements.
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THE POP PERSPECTIVE

Every representational scheme has its good and bad points. Distrib-

uted representations are no exception. Some desirable properties arise
very naturally from the use of patterns of activity as representations.
Other properties , like the ability to temporarily store a large set of arbi-
trary associations , are much harder to achieve. As we shall see, the

best psychological evidence for distributed representations is the degree
to which their strengths and weaknesses match those of the human

mind.
The first section of this chapter stresses some of the virtues of

distributed representations. The second section considers the efficiency
of distributed representations, and shows clearly why distributed
representations can be better than local ones for certain classes of prob-
lems. A final section discusses some difficult issues which are often
avoided by advocates of distributed representations, such as the
representation of constituent structure and the sequential focusing of

. processing effort on different aspects of a structured object.

Disclaimers: Before examining the detailed arguments in favor of
distributed representations , it is important to be- clear about their status
within an overall theory of human information processing. It would be
wrong to view distributed representations as an alternative to representa-

tional schemes like semantic networks or production systems that have
been found useful in cognitive psychology and artificial intelligence. 
is more fruitful to view them as one way of implementing these more
abstract schemes in parallel networks , but with one proviso: Distrib-
uted representations give rise to some powerful and unexpected emer-
gent properties. These properties can therefore be taken as primitives
when working in a more abstract formalism. For example , distributed
representations are good for content-addressable memory, automatic
generalization , and the selection of the rule that best fits the current
situation. So if one assumes that more abstract models are imple-
mented in the brain using distributed representations , it is not unrea-
sonable to treat abilities like content-addressable memory, automatic
generalization, or the selection of an appropriate rule as primitive
operations , even though there is no easy way to implement these opera-
tions in conventional computers. Some of the emergent properties of
distributed representations are not easily captured in higher-level for-
malisms. For example , distributed representations are consistent with
the simultaneous application of a large number of partially fitting rules
to the current situation , each rule being applied to the degree that it is
relevant. We shall examine these properties of distributed representa-
tions in the chapter on schemata (Chapter 14). There we will see clearly
that schemata and other higher-level constructs provide only approxi-
mate characterizations of mechanisms which rely on distributed
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3. DISTRIBUTED REPRESENT A nONS

representations. Thus, the contribution that an analysis of distributed
representations can make to these higher- level formalisms is to legiti-
mize certain powerful , primitive operations which would otherwise
appear to be an appeal to magic; to enrich our repertoire of primitive
operations beyond those which can conveniently be captured in many
higher-level formalisms; and to suggest that these higher- level formal-
isms may only capture the coarse features of the computational capabili-
ties of the underlying processing mechanisms.

Another common source of confusion is the idea that distributed
representations are somehow in conflict with the extensive evidence for
localization of function in the brain (Luria, 1973). A system that uses
distributed representations still requires many different modules for
representing completely different kinds of thing at the same time. The
distributed representations occur within these localized modules. For
example , different modules would be devoted to things as different as
mental images and sentence structures , but two different mental images
would correspond to alternative patterns of activity in the same module.
The representations advocated here are local at a global scale but global
at a local scale.

VIRTUES OF DISTRIBUTED REPRESENTATIONS

This section considers three important features of distributed
representations: (a) their essentially constructive character; (b) their
ability to generalize automatically to novel situations; and (c) their
tunability to changing environments. Several of these virtues are
shared by certain local models , such as the interactive activation model
of word perception , or McClelland's (1981) model of generalization and
retrieval described in Chapter 1.

Memory as Inference

People have a very flexible way of accessing their memories: They
can recall items from partial descriptions of their contents (Norman &
Bobrow, 1979). Moreover , they can do this even if some parts of the
partial description are' wrong. Many people , for example, can rapidly
retrieve the item that satisfies the following partial description: It is an
actor, it is intelligent , it is a politician. This kind of content-addressable
memory is very useful and it is very hard to implement on a conven-
tional computer because computers store each item at a particular
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THE PDP PERSPECTIVE

address , and to retrieve an item they must know its address. If all the
combinations of descriptors that will be used for access are free of
errors and are known in advance , it is possible to use a method called
hash coding that quickly yields the address of an item when given part
of its content. In general, however, content-addressable memory
requires a massive search for the item that best fits the partial descrip-
tion. The central computational problem in memory is how to make
this search efficient. When the cues can contain errors , this is very dif-
ficult because the failure to fit one of the cues cannot be used as a filter
for quickly eliminating inappropriate answers.

Distributed representations provide an efficient way of using parallel
hardware to implement best-fit searches. The basic idea is fairly sim-
ple , though it is quite unlike a conventional computer memory. Dif-
ferent items correspond to different patterns of activity over the very
same group of hardware units. A partial description is presented in the
form of a partial activity pattern, activating some of the hardware
units. 1 Interactions between the units then allow the set of active units
to influence others of the units , thereby completing the pattern , and
generating the item that best fits the description. A new item is
stored" by modifying the interactions between the hardware units so as

to create a new stable pattern of activity. The main difference from a
conventional computer memory is that patterns which are not active do
not exist anywhere. They can be fe-created because the connection
strengths between units have been changed appropriately, but each con-
nection strength is involved in storing many patterns , so it is impossible
to point to a particular place where the memory for a particular item is
stored.

Many people are surprised when they understand that the connec-
tions between a set of simple processing units are capable of supporting
a large number of different patterns. Illustrations of this aspect of dis-
tributed models are provided in a number of papers in the literature
(e. , Anderson, 1977; Hinton, 1981a); this property is illustrated in
the model of memory and amnesia described in Chapters 17 and 25.

One way of thinking about distributed memories is in terms of a very
large set of plausible inference rules. Each active unit represents a
microfeature " of an item , and the connection strengths stand for plau-

sible " microinferences" between microfeatures. Any particular pattern

1 This is easy if the partial description is simply a set of features , but it is much more
difficult if the partial description mentions relationships to other objects. If, for example,
the system is asked to retrieve John s father , it must represent John , but if John and his
father are represented by mutually exclusive patterns of activity in the very same group
of units , it is hard to see how this can be done without preventing the representation of
John s father. A distributed solution to this problem is described in the text.
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3. DISTRIBUTED REPRESENTATIONS

~ ..

of activity of the units will satisfy some of the microinferences and
violate others. A stable pattern of activity is one that violates the plau-
sible microinferences less than any of the neighboring patterns. A new
stable pattern can be created by changing the inference rules so that the
new pattern violates them less than its neighbors. This view of
memory makes it clear that there is no sharp distinction between
genuine memory and plausible reconstruction. A. genuine memory is a
pattern that is stable because the inference rules were modified when it
occurred before. A" confabulation " is a pattern that is stable because of
the way the inference rules have been modified to store several dif-
ferent previous patterns. So far as the subject is concerned , this may
be indistinguishable from the real thing.

The blurring of the distinction between veridical recall and confabu-
lation or plausible reconstruction seems to be characteristic of human
memory (Bartlett, 1932; Neisser , 1981). The reconstructive nature of
human memory is surprising only because it conflicts with the standard
metaphors we use. We tend to think that a memory system should
work by storing literal copies of items and then retrieving the stored
copy, as in a filing cabinet or a typical computer database. Such sys-
tems are not naturally reconstructive.

If we view memory as a process that constructs a pattern of activity
which represents the most plausible item that is consistent with the
given cues, we need some guarantee that it will converge on the
representation of the item that best fits the description , though it might
be tolerable to sometimes get a good but not optimal fit. It is easy 
ima~ine this happening, but it is harder to make it actually work. One
recent approach to this problem is to use statistical mechanics to
analyze the behavior of groups of interacting stochastic units. The
analysis guarantees that the better an item fits the description , the more
likely it is to be produced as the solution. This approach is described in
Chapter 7 , and a related approach is described in Chapter 6. An alter-
native approach, using units with continuous activations (Hopfield
1984) is described in Chapter 14.

Similarity and Generalization

When a new item is stored, the modifications in the connection

strengths must not wipe out existing items. This can be achieved by
modifying a very large number of weights very slightly. If the modifi-
cations are all in the direction that helps the pattern that is being
stored, there will be a conspiracy effect: The total help for the
intended pattern will be the sum of all the small separate modifications.
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THE PDP PERSPECTIVE

For unrelated patterns, however, there will be very little transfer of
effect because some of the modifications will help and some will
hinder. Instead of all the small modifications conspiring together, they
will mainly cancel out. This kind of statistical reasoning underpins
most distributed memory models , but there are many variations of the
basic idea (See Hinton & Anderson, 1981 , for several examples).

It is possible to prevent interference altogether by using orthogonal
patterns of activity for the various items to be stored (a rudimentary
example of such a case is given in Chapter 1). However, this elim-
inates one of the most interesting properties of distributed representa-
tions: They automatically give rise to generalizations. If the task is
simply to remember accurately a set of unrelated items , the generaliza-

tion effects are harmful and are called interference. But generalization
is normally a helpful phenomenon. It allows us to deal effectively with
situations that are similar but not identical to previously experienced
situations.

People are good at generalizing newly acquired knowledge. If you
learn a new fact about an object , your expectations about other similar
objects tend to change. If, for example , you learn that chimpanzees like
onions you will probably raise your estimate of the probability that
gorillas like onions. In a network that uses distributed representations
this kind of generalization is automatic. The new knowledge about
chimpanzees is incorporated by modifying some of the connection
strengths so as to alter the causal effects of the distributed pattern of
activity that represents chimpanzees. 2 The modifications automatically
change the causal effects of all similar activity patterns. So if the
representation of gorillas is a similar activity pattern over the same set
of units , its causal effects will be changed in a similar way.

The very simplest distributed scheme would represent the concept of
onion and the concept of chimpanzee by alternative activity patterns

over the very same set of units. It would then be hard to represent
chimps and onions at the same time. This problem can be solved by

using separate modules for each possible role of an item within a larger
structure. Chimps , for example , are the " agent" of the liking and so a
pattern representing chimps occupies the " agent" module and the pat-
tern representing onions occupies the " patient" module (see Figure 1).

2 The internal structure of this pattern may also change. There is always a choice
between changing the weights on the outgoing connections and changing the pattern itself
so that different outgoing. connections become relevant. Changes in the pattern itself
alter its similarity to other patterns and thereby alter how generalization will occur in the
future. It is generally much harder to figure out how to change the pattern that represents
an item than it is to figure out how to change the outgoing connections so that a particu-
lar pattern will have the desired effects on another part of the network.
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3. DISTRIBUTED REPRESENT A nONS

Each module can have alternative patterns for all the various items , so
this scheme does not involve local representations of items. What is
localized is the role.

If you subsequently learn that gibbons and orangutans do not like
onions your estimate of the probability that gorillas like onions will fall
though it may still remain higher than it was initially. Obviously, the
combination of facts suggests that liking onions is a peculiar quirk of
chimpanzees. A system that uses distributed representations will
automatically arrive at this conclusion , provided that the alternative pat-
terns that represent the various apes are related to one another in a par-
ticular way that is somewhat more specific than just being similar to
one another: There needs to be a part of each complete pattern that is
identical for all the various apes. In other words, the group of units

used for the distributed representations must be divided into two

RELATIONSHIP

AGENT PATIENT

FIGURE I. In this simplified scheme there are two different modules, one of which
represents the agent and the other the patient. To incorporate the fact that chimpanzees
like onions , the pattern for chimpanzees in one module must be associated with the pat-
tern for onions in the other module. Relationships other than " liking " can be imple-
mented by having a third group of units whose pattern of activity represents the relation-
ship. This pattern must then " gate" the interactions between the agent and patient
groups. Hinton (I98Ia) describes one way of doing this gating by using a fourth group of
units.
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THE POP PERSPECTIVE

subgroups, and all the various apes must be represented by the same
pattern in the first subgroup, but by different patterns in the second
subgroup. The pattern of activity over the first subgroup represents the

type of the item , and the pattern over the second subgroup represents
additional microfeatures that discriminate each instance of the type
from the other instances. Note that any subset of the microfeatures
can be considered to define a type. One subset might be common to all
apes, and a different (but overlapping) subset might be common to all
pets. This allows an item to be an instance of many different types
simultaneously.

When the system learns a new fact about chimpanzees , it usually has
no way of knowing whether the fact is true of all apes or is just a
property of chimpanzees. The obvious strategy is therefore to modify
the strengths of the connections emanating from all the active units , so
that the new knowledge will be partly a property of apes in general and
partly a property of whatever features distinguish chimps from other
apes. If it is subsequently learned that other apes do not like onions
correcting modifications will be made so that the information about
onions is no longer associated with the sub pattern that is common to all
apes. The knowledge about onions will then be restricted to the sub-
pattern that distinguishes chimps from other apes. If it had turned out
that gibbons . and orangutans also liked onions , the modifications in the
weights emanating from the subpattern representing apes would have
reinforced one another , and the knowledge would have become associ-
ated with the subpattern shared by all apes rather than with the patterns
that distinguish one ape from another.

very simple version of this theory of generalization has been
implemented in a computer simulation (Hinton, 1981a). Several appli-
cations that make use of this property can be found in Part IV of this
book.

There is an obvious generalization of the idea that the representation
of an item is composed of two parts, one that represents the type and
another that represents the way in which this particular instance differs
from others of the same type. Almost all types are themselves
instances of more general types , and this can be implemented by divid-
ing the pattern that represents the type into two subpatterns , one for
the more general type of which this type is an instance , and the other
for the features that discriminate this particular type from others
instances of the same general type. Thus the relation between a type
and an instance can be implemented by the relationship between a set
of units and a larger set that includes it. Notice that the more general
the type , the smaller the set of units used to encode it. As the number
of terms in an intensional description gets smaller, the corresponding

extensional set gets larger.
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3. DISTRIBUTED REPRESENT A TIONS

In traditional semantic networks that use local representations, gen-
eralization is not a direct consequence of the representation. Given
that chimpanzees like onions , the obvious way of incorporating the new
knowledge is by changing the strengths of connections belonging to the
chimpanzee unit. But this does not automatically change connections

that belong to the gorilla unit. So extra processes must be invoked to
implement generalization in a localist scheme. One commonly used
method is to allow activation to spread from a local unit to other units
that represent similar concepts (Collins & Loftus, 1975; Quillian
1968). Then when one concept unit is activated, it will partially
activate its neighbors and so any knowledge stored in the connections
emanating from these neighbors will be partially effective. There are
many variations of this basic idea (Fahlman, 1979; Levin, 1976;
McClelland , 1981).

It is hard to make a clean distinction between systems that use local
representations plus spreading activation and systems that use distrib-
uted representations. In both cases the result of activating a concept is
that many different hardware units are active. The distinction almost
completely disappears in some models such as McClelland's (1981)
generalization model , where the properties of a concept are represented
by a pattern of activation over feature units and where this pattern of
activation is determined by the interactions of a potentially very large
number of units for instances of the concept. The main difference is
that in one case there is a particular individual hardware unit that acts
as a " handle . which makes it easy to attach purely conventional proper-
ties like the name of the concept and easier for the theorist who con-
structed the network to know what the individual parts of the network
stand for.

If we construct our networks by hand-specifying the connections
between the units in the network, a local representation scheme has
some apparent advantages. First , it is easier to think one understands
the behavior of a network if one has put in all the " knowledge -all the

connections-oneself. But if it is the entire, distributed pattern of

interacting influences among the units in the network that is doing the
work, this understanding can often be illusory. Second, it seems intui-
tively obvious that it is harder to attach an arbitrary name to a distrib-
uted pattern than it is to attach it to a single unit. What is intuitively
harder , however, may not be more efficient. We will see that one can
actually implement aribitrary associations with fewer units using distrib-
uted representations. Before we turn - to such considerations , however
we examine a different advantage of distributed representations: They
make it possible to create new concepts without allocating new
hardware.
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Creating New Concepts

Any plausible scheme for representing knowledge must be capable of
learning novel concepts that could not be anticipated at the time the
network was initially wired up. A scheme that uses local representa-
tions must first make a discrete decision about when to form a new con-
cept , and then it must find a spare hardware unit that has suitable con-
nections for implementing the concept involved. Finding such a unit
may be difficult if we assume that , after a period of early development
new knowledge is incorporated by changing the strengths of the existing
connections rather than by growing new ones. If each unit only has
connections to a small fraction of the others , there will probably not be
any units that are connected to just the right other ones to implement a
new concept. For example , in a collection of a million units each con-
nected at random to ten thousand others , the chance of there being any
unit that is connected to a particular set of 6 others is only one in a
million.

In an attempt to rescue local representations from this problem
several clever schemes have been proposed that use two classes of
units. The units that correspond to concepts are not directly connected
to one another. Instead, the connections are implemented by indirect
pathways through several layers of intermediate units (Fahlman, 1980;

Feldman, 1982). This scheme works because the number of potential
pathways through the intermediate layers far exceeds the total number
of physical connections. If there are layers of units , each of which
has a fan-out of connections to randomly selected units in the follow-
ing layer, there are potential pathways. There is almost certain to be
a pathway connecting any two concept-units, and so the intermediate
units along this pathway can be dedicated to connecting those two
concept-units. However, these schemes end up having to dedicate
several intermediate units to each effective connection, and once the

dedication has occurred, all but one of the actual connections emanat-
ing from each intermediate unit are wasted. The use of several inter-
mediate units to create a single effective connection may be appropriate
in switching networks containing elements that have units with rela-
tively small fan-out , but it seems to be an inefficient way of using the
hardware of the brain.

The problems of finding a unit to stand for a new concept and wiring
it up appropriately do not arise if we use distributed representations.
All we need to do is modify the interactions between units so as to
create a new stable pattern of activity. If this is done by modifying a
large number of connections very slightly, the creation of a new pattern
need not disrupt the existing representations. The difficult problem is
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3. DISTRIBUTED REPRESENTATIONS

to choose an appropriate pattern for the new concept. The effects of
the new representation on representations in other parts of the system
will be determined by the units that are active , and so it is important to
use a collection of active units that have roughly the correct effects,
Fine-tuning of the effects of the new pattern can be achieved by
slightly altering the effects of the active units it contains , but it would
be unwise to choose a random pattern for a new concept because major
changes would then be needed in the weights , and this would disrupt
other knowledge. Ideally, the distributed representation that is chosen
for a new concept should be the one that requires the least modification
of weights to make the new pattern stable and to make it have the
required effects on other representations.

Naturally, it is not necessary to create a new stable pattern all in one
step. It is possible for the pattern to emerge as a result of modifications
on many separate occasions. This alleviates an awkward problem that
arises with local representations: The system must make a discrete all-
or-none decision about when to create a new concept. If we view con-
cepts as stable patterns , they are much less discrete in character. It is
possible, for 'example, to differentiate one stable pattern into two
closely related" but different variants by modifying some of the weights
slightly. Unless we are allowed to clone the hardware units (and all
their connections), this kind of gradual , conceptual differentiation is
much harder to achieve with local representations.

One of the central problems in the development of the theory of dis-
tributed representation is the problem of specifying the exact pro-

cedures by which distributed representations are to be learned, All
such procedures involve connection strength modulation, following
learning rules" of the type outlined in Chapter 2. Not all the problems

have been solved , but significant progress is being made on these prob-
lems. (See the chapters in Part II,)

DISTRIBUTED REPRESENTATIONS THAT
WORK EFFICIENTLY

In this section , we consider some of the technical details about the
implementation of distributed representations, First , we point out that
certain distributed representation schemes can fail to provide a suffi-
cient basis for differentiating different concepts, and we point out what
is required to avoid this limitation. Then, we describe a way of using
distributed representations to get the most information possible out of a
simple network of connected units. The central result is a surprising
one: If you want to encode features accurately using as few units as
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possible , it pays to use units that are very coarsely tuned, so that each

feature activates many different units and each unit is activated by
many different features. A specific feature is then encoded by a pattern
of activity' in many units rather than by a single active unit, so coarse
coding is a form of distributed representation.

To keep the analysis simple , we shall assume that the units have only
two values , on and off.3 We shall also ignore the dynamics of the sys-
tem because the question of interest, for the time being, is how many
units it takes to encode features with a given accuracy. We start by
considering the kind of feature that can be completely specified by giv-
ing a type (e. , line-segment, corner, dot) and the values of some
continuous parameters that distinguish it from other features of the
same type (e. , position, orientation , size,) For each type of feature
there is a space of possible instances. Each continuous parameter
defines a dimension of the feature space , and each particular feature
corresponds to a point in the space. For features like dots in a plane
the space of possible features is two-dimensional. For features like
stopped, oriented edge-segments in ~hree-dimensional space, the
feature space . is six-dimensional. We shall start by considering two-
dimensional feature spaces and then generalize to higher dimensionali-
ties.

Suppose that we wish to represent the position of a single dot in a
plane , and we wish to achieve high accuracy without using too many
units. We define the accuracy of an encoding scheme to be the number
of different encodings that are generated as the dot is moved a standard
distance through the space. One encoding scheme would be to divide
the units into an X group and a Y group, and dedicate each unit to
encoding a particular or interval as shown in Figure 2. A given dot
would then be encoded by activity in two units , one from each group,
and the accuracy would be proportional to the number of units used.
Unfortunately, there are two problems with this. First , if two dots have
to be encoded at the same time , the method breaks down. The two
dots will activate two units in each group, and there will be no way of
telling, from the active units , whether the dots were at (x 1) and

(x 2) or at (x 2) and (x 1). This is called the binding prob-
lem. It arises because the representation does not specify what goes

with what.

J Similar arguments apRly with multivalued activity levels, but it is important not to
an ow activity levels to have arbitrary precision because this makes it possible to represent
an infinite amount of information in a single activity level. Units that transmit a discrete
impulse with a probability that varies as a function of their activation seem to approxi-
mate the kind of precision that is possible in neural circuitry (see Chapters 20 and 21).
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3. DISTRIBUTED REPRESENTATIONS

X group

X group

FIGURE 2. A: A simple way of using two groups of binary units to encode the position
of a point in a two-dimensional space. The active units in the X and Y groups represent
the x- and y-coordinates. B: When two points must be encoded at the same time, it is
impossible to tell which x-coordinate goes with which y-coordinate.

The second problem arises even if we allow only one point to be
represented at a time. Suppose we want certain representations to be
associated with an overt response , but not others: We want (x 

and ex 2 2) to be associated with a response , but not (x 2) or

(x 1). We cannot implement this association using standard
weighted connections to response units from units standing for the

values on the two dimensions separately. For the unit for 1 and the
unit for 2 would both have to activate the response, and the unit for
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1 and the unit for 2 would both have to activate the response. There
would be no way of preventing the response from being activated when
the unit for 1 and the unit for 2 were both activated. This is another
aspect of the binding problem since, again, the representation fails to
specify what must go with what. 

In a conventional computer it is easy to solve the binding problem.
We simply create two records in the computer memory. Each record
contains a pair of coordinates that go together !IS coordinates of one
dot, and the binding information is encoded by the fact that the two
coordinate values are sitting in the same record (which usually means
they are sitting in neighboring memory locations). In parallel networks
it is much harder to solve the binding problem.

Conjunctive Encoding

One approa€h is to set aside, in advance, one unit for each possible
combination of and values. This amounts to covering the plane
with a large number of small , nonoverlapping zones and dedicating a
unit to each zone. A dot is then represented by activity in a single unit
so this is a local representation. The use of one unit for each discrimin-
able feature solves the binding problem by having units which stand for
the conjunction of values on each of two dimensions. In general , to

permit an arbitrary association between particular combinations of
features and some output or other pattern of activation , some conjunc-
tive. representation may be required.

However , this kind of local encoding is very expensive. It is much
less efficient than the previous scheme because the accuracy of pin-
pointing a point in the plane is only proportional to the square root of

the number of units. In general , for a k-dimensional feature space , the
local encoding yields an accuracy proportional to the kth root of the

number of units. Achieving high accuracy without running into the
binding problem is thus very expensive.

The use of one unit for each discriminable feature may be a reason-
able encoding if a very large number of features are presented on each
occasion , so that a large fraction of the units are active. However, it is
a very inefficient encoding if only a very small fraction of the possible.
features are presented at once. The average amount of information
conveyed by the state of a binary unit is 1 bit if the unit is active half
the time , and it is much less if the unit is only rarely active.4 It would

Jhe amount of information conveyed by a unit that has a probability of p of being on
is-plogo-(1- p)log(1-

p). \
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3. DISTRIBUTED REPRESENTATIONS

therefore be more efficient to use an encoding in which a larger frac-
tion of the units were active at any moment. This can be done if we
abandon the idea that each discriminable feature is represented by
activity in a single unit.

Coarse Coding

Suppose we divide the space into larger , overlapping zones and assign
a unit to each zone. For simplicity, we will assume that the zones are
circular that their centers have a uniform random distribution
throughout the space , and that all the zones used by a given encoding
scheme have the same radius. The question of interest is how
accurately a feature is encoded as a function of the radius of the zones.
If we have a given number of units at our disposal is it better to use
large zones so that each feature point falls in many zones , or is it better
to use small zones so that each feature is represented by activity in
fewer but more finely tuned units?

The accuracy is proportional to the number of different encodings
that are generated as we move a feature point along a straight line from
one side of the space to the other. Every time the line crosses the
boundary of a zone , the encoding of the feature point changes because
the activity of the unit corresponding to that zone changes. So the
number of discriminable features along the line is just twice the
number of zones that the line penetrates. 5 The line penetrates every
zone whose center lies within one radius of the line (see Figure 3).
This number is proportional to the radius of the zones and it is also
proportional to their number n. Hence the accuracy, is related to

the number of zones and to their radius as follows:

Qa; nr.

In general , for a k-dimensional space , the number of zones whose
centers lie within one radius of a line through the space is proportional
to the volume of a k-dimensional hypercylinder of radius r. This
volume is equal to the length of the cylinder (which is fixed) times its
(k- I)-dimensional cross-sectional area which is proportional to k- 

Problems arise if you enter and leave a zone without crossing other zone borders in
between because you revert to the same encoding as before , but this effect is negligible if
the zones are dense enough for there to be many zones containing each point in the
space.
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FIGURE 3. The humber of zone boundaries that are cut by the line is proportional to
the number of zone centers within one-zone radius of the line.

Hence , the accuracy is given by

aa; nr

, for example , doubling the radius of the zones increases by a fac-
tor of 32 , the linear accuracy with which a six-dimensional feature like a
stopped oriented three-dimensional edge is represented. The intuitive
idea that larger zones lead to sloppier representations is entirely wrong
because distributed representations hold information much more effi-
ciently than local ones. Even though each active unit is less specific in
its meaning, the combination of active units is far more specific.
Notice also that with coarse coding the accuracy is proportional to the
number of units , which is much better than being proportional to the
kth root of the number.

Units that respond to complex features in retinotopic maps in visual
cortex often have fairly large receptive fields. This is often interpreted
as the first step on the way to a translation invariant representation.
However, it may be that the function of the large fields is not to
achieve translation invariance but to pinpoint accurately where the
feature is!

Limitations on coarse coding. So far, only the advantages of coarse
coding have been mentioned, and its problematic aspects have been
ignored. There are a number of limitations that cause the coarse cod-
ing strategy to break down when the " receptive fields" become too
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large. One obvious limitation occurs when the fields become compar-
able in size to the whole space. This limitation is generally of little
interest because other, more severe, problems arise before the recep-
tive fields become this large.

Coarse coding is only effective when the features that must be
represented are relatively sparse. If many feature points are crowded
together, each receptive field will contain many features and the activity
pattern in the coarse-coded units will not discriminate between many
alternative combinations of feature points. (If the units are allowed to
have integer activity levels that reflect the number of feature points fal-
ling within their fields, a few nearby points can be tolerated, but not
many.) Thus there is a resolution/accuracy trade-off. Coarse coding
can give high accuracy for the parameters of features provided that
features are widely . spaced so that high resolution is not also required.
As a rough rule of thumb, the diameter of the receptive fields should
be of the same order as the spacing between simultaneously present

feature points.
The fact that coarse coding only works if the features are sparse

should be unsurprising given that its advantage over a local encoding is
that it uses the information capacity of the units more efficiently by
making each unit active more often. If the features are so dense that
the units would be active for about half the time using a local encoding,
coarse coding can only make things worse.

A second major limitation on the use of coarse coding stems from
the fact that the representation of a feature must be used to affect other
representations. There is no point using coarse coding if the features
have to be recoded as activity in finely tuned units before they can
have the appropriate effects on other representations. If we assume
that the effect of a distributed representation is the sum of the effects

of the individual active units that constitute the representation , there is
a strong limitation on the circumstances under which coarse coding can
be used effectively. Nearby features will be encoded by similar sets of
active units , and so they will inevitably tend to have similar effects.
Broadly speaking, coarse coding is only useful if the required effect of a
feature is the average of the required effects of its neighbors. At a fine
enough scale this is nearly always true for spatial tasks. The scale at
which it breaks down determines an upper limit on the size of the
receptive fields.

6 It is interesting that many of the geometric visual illusions illustrate interactions
between features at a distance much greater than the uncertainty in the subjects
knowledge of the position of a feature. This is just what would be expected if coarse cod-
ing is being used to represent complex features accurately.
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Another limitation is that whenever coarse-coded representations
interact, there is a tendency for the coarseness to increase. To coun-
teract this tendency, it is probably necessary to have lateral inhibition
operating within each representation. This issue requires further
research.

Extension to noncontinuous spaces. The principle underlying coarse
coding can be generalized to noncontinuous spaces by thinking of a set
of items as the equivalent of a receptive field. A local representation
uses one unit for each possible item. A distributed representation uses
a unit for a set of items , and it implicitly encodes a particular item as
the intersection of the sets that correspond to the active units.

In the domain of spatial features there is generally a very strong
regularity: Sets of features with similar parameter values need to have
similar effects on other representations. Coarse coding is efficient
because it allows this regularity to be expressed in the connection
strengths. In other domains , the regularities are different , but the effi-
ciency arguments are the same: It is better to devote a unit to a set of
items than to.a single item , provided ,that the set is chosen in such a
way that membership in the set implies something about membership
in other sets. This implication can then be captured as a connection

strength. Ideally, a set should be chosen so that membership of this
set has strong implications for memberships of other sets that are also
encoded by individual units.

We illustrate these points with a very simple example. Consider a
microlanguage consisting of the three-letter words of English made up
of or I, followed by or followed by or f. The strings wig and leg
are words , but weg, fig, and all strings ending in are not. Suppose 

wanted to use a distributed representation scheme as a basis for
representing the words , and we wanted to be able to use the distributed
pattern as a basis for deciding whether the string is a word or a non-
word. For simplicity we will have a single " decision" unit. The prob-
lem is to find connections from the units representing the word to the
decision unit such that it fires whenever a word is present but does not
fire when no word is present. 

7 Note that the problem remains the same if the decision unit is replaced by a set of
units and the task of the network is to produce a different pattern for the word and non-
word decisions. For when we examine each unit , it either takes the same or a different
value in the two patterns; in the cases where the value is the same, there is no problem
but neither do such units differentiate the two patterns. When the values are different
the unit behaves just like the single decision unit discussed in the text.
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3. DISTRIBUTED REPRESENTATIONS

Figure 4 shows three representation schemes: a distributed scheme
that does not work, a distributed scheme that does work , and a local
scheme. In the first scheme, each letter/position combination is
represented by a different unit. Since there are only five letter/position
possibilities , only five units have connections to the output unit. Each
word and nonword produces a different and unique pattern over these
five units, but the connections from the five units to the decision unit
cannot be set in such a way as to make the decision unit fire whenever
one of the words is present and fail to fire whenever one of the non-
words is present.

The reason for the problem is simply that the connections between
the letter/position units and the decision units can only capture the

degree to which each letter indicates whether the string is a word or
not. The tends to indicate that a word is present , whereas the indi-
cates that the item is not a word; but each of the other letters , taken
individually, has absolutely no predictive ability in this case.

Whether a l.etter string is a word or not cannot be determined con-
clusively from. the individual letters it contains; it is necessary to con-
sider also what combinations of letters it contains. Thus , we need a
representation that captures what combinations of letters are present in
a way that is sufficient for the purposes of the network. One could cap-
ture this by using local representations and assigning one node to each
word , as in the third panel of Figure 4. However , it is important to see
that one need not go all the way to local representations to solve the

FIGURE 4. Three networks applied to the problem of determining which of the strings
that can be made from or /, followed by or followed by or form words.

Numbers on the connections represent connection strengths; numbers on the units
represent the units ' thresholds. A unit will take on an activation equal to 1 if its input
exceeds it threshold; otherwise, its activation is 
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problem facing our network. Conjunctive distributed representations
will suffice.

The scheme illustrated in the second panel of the figure provides a
conjunctive distributed representation. In this scheme, there are units
for pairs of letters which , in this limited vocabulary, happen to capture
the combinations that are essential for detennining whether a string of
letters is a word or not. These are, of course . the pairs wi and Ie.
These conjunctive units, together with direct input to the decision unit

from the unit, are sufficient to construct a network which correctly
classifies all strings consisting of a or an followed by an i or an 

followed by a or 

This example illustrates that conjunctive coding is often necessary if
distributed representations are to be used to solve problems that might
easily be posed to networks. This same point could be illustrated with
many other examples- the exclusive or problem is the classic example
(Minsky & Papert, 1969). Other examples of problems requiring some
sort of conjunctive encoding can be found in Hinton (1981a) and in

Chapters 7 and 8. An application of conjunctive coding to a psychologi-
cal model is found in Chapter 18. 

Some problems (mostly very simple ones) can be solved without any
conjunctive encoding at all , and others will require conjuncts of more
than two units at a time. In general , it is hard to specify in advance just
what" order" of conjunctions will be required. Instead , it is better to
search for a learning scheme that can find representations that are ade-
quate. The mechanisms proposed in Chapters 7 and 8 represent two
step~ toward this goal.

Implementing an Arbitrary Mapping Between Two Domains

The attentive reader will have noticed that a local representation can

always be made to work in the example we have just considered. How-
ever, we have already discussed several reasons why distributed
representations are preferable. One reason is that they can make more
efficient use of parallel hardware than local representations.

This section shows how a distributed representation in one group of
units can cause an appropriate distributed representation in another
group of units. We consider the problem of implementing an arbitrary
pairing between representations in the two groups, and we take as an
example an extension of the previous one: the association between the
visual fonn of a word and its meaning. The reason for considering an
arbitrary mapping is that this is the case in which local representations
seem most helpful. If distributed representations are better in this
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3. DISTRIBUTED REPRESENTATIONS

case , then they are certainly better in cases where there are underlying
regularities that can be captured by regularities in the patterns of activa-
tion on the units in one group and the units in another. A discussion
of the benefit distributed representations can provide in such cases can

be found in Chapter 18.

If we restrict ourselves to monomorphemic words , the mapping from
strings of graphemes onto meanings appears to be arbitrary in the sense
that knowing what some strings of graphemes mean does not help one
predict what a new string means. 8 This arbitrariness in the mapping
from graphemes to meanings is what gives plausibility to models that
have explicit word units. It is obvious that arbitrary mappings can be
implemented if there are such units. A grapheme string activates
exactly one word unit, and this activates whatever meaning we wish to
associate with it (see Figure SA). The semantics of similar grapheme
strings can then be completely independent because they are mediated
by separate word units. There is none of the automatic generalization
that is characteristic of distributed representations.

Intuitively, it is not at all obvious that arbitrary mappings can be
implemented in a system where the intermediate layer of units encodes
the word as a distributed pattern of activity instead of as activity in a
single local unit. The distributed alternative appears to have a serious
drawback. The effect of a pattern of activity on other representations is
the combined result of the individual effects of the active units in the
pattern. So similar patterns tend to have similar effects. It appears that
we are not free to make a given pattern have whatever effect we wish
on the meaning representations without thereby altering the effects that
other patterns have. This kind of interaction appears to make it diffi-
cult to implement arbitrary mappings from distributed representations
of words onto meaning representations. We shall now show that these
intuitions are wrong and that distributed representations of words can
work perfectly well and may even be more efficient than single word
units.

Figure SB shows a three-layered system in which grapheme/ position
units feed into word-set units which, in turn , feed into semantic 

sememe units. Models of this type, and closely related variants , have
been analyzed by w.llshaw n98f5~- V. Dobson (personal communica-
tion, 1984), and by David Zipser (personal communication, 1981);
some further relevant analyses are discussed in Chapter 12. For simpli-

8 Even for mono morphemic words there may be particular fragments that have associ-
ated meaning. For example , words starting with sn usually mean something unpleasant
to do with the lips or nose (sneer, snarl, snigger), and words with long vowels are more
likely to stand for large , slow things than words with short vowels (George Lakoff, per-
sonal communication). Much of Lewis Carroll's poetry relies on such effects.
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r/3

3/2 C3) ED C2D C3J

FIGURE 5. A: A three-layer network. The bottom layer contains units that represent
particular graphemes in particular positions within the word. The middle layer contains
units that recognize complete words, and the top layer contains units that represent

semantic features of the meaning of the word. This network uses local representations of
words in the middle layer. B: The top and bottom layers are the same as in (A), but the
middle layer uses a more distributed . representation. Each unit in this layer can be
activated by the graphemic representation of anyone of a whole set of words. The unit
then provides input to every semantic feature that occurs in the meaning of any of the
words that activate it. Only those word sets containing the word cat are shown in this
example. Notice that the only semantic features which receive input from all these word
sets are the semantic features of cat.

city, we shall assume that each unit is either active or inactive and that
there is no feedback or cross-connections. These assumptions can be
relaxed without substantially affecting the argument. A word-set unit is
activated whenever the pattern of the grapheme/position units codes a
word in a particular set. The set could be all the four-letter words start-
ing with for example , or all the words containing at least two 
All that is required is that it is possible to decide whether a word is in
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3. DISTRIBUTED REPRESENT A nONS

the set by applying a simple test to the activated grapheme/position
units. So, for example, the set of all words meaning " nice " is not
allowed as a word set. There is an implicit assumption that word mean-
ings can be represented as sets of sememes. This is a contentious
issue. There appears to be a gulf between the componential view in
which a meaning is a set of features and the structuralist view in which
the meaning of a word can only be defined in terms of its relationships
to other meanings. Later in this chapter we consider one way of
integrating these two views by allowing articulated representations to be
built out of a number of different sets of active features.

Returning to Figure 5B, the question is whether it is possible to
implement an arbitrary set of associations between grapheme/position
vectors and sememe vectors when the word-set units are each activated
by more than one word. It will be sufficient to consider just one of the
many possible specific models. Let us assume that an active word-set
unit provides positive input to all the sememe units that occur in the
meaning of any word in the word set. Let us also assume that each
sememe unit ~as a variable threshold that is dynamically adjusted to be
just slightly less than the number of active word-set units. Only
sememe units that are receiving input from every active word-set unit
will then become active. 

All the sememes of the correct word will be activated because each
of these sememes will occur in the meaning of one of the words in the
active ~ord sets. However, additional sememes may also be activated
because, just by chance, they may receive input from every active
word-set unit. For a sememe to receive less input than its threshold
there must be at least one active word set that does not contain any
word which has the sememe as part of its meaning. For each active
word set the probability, i , of this happening is

;= 

(l_ p)(w-

where is the proportion of words that contain the sememe and 
the number of words in the word set of the word-set unit. The reason
for the term w - 1 is that the sememe is already assumed not to be
part of the meaning of the correct word , so there are only - 1
remaining words that could have it in their meaning.

Assume that when a word is coded at the graphemic level it activates
units at the word-set level. Each sememe that is not part of the

word' s meaning has a probability i of failing to receive input from each
word-set unit. The probability, f, that all of these word-set units will
provide input to it is therefore
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(1 i)U

= (I - (1 p) (w O)U

By inspection, this probability of a " false-positive " sememe reduces
to zero when is 1. Table 1 shows the value of for various combi-
nations of values of p, u and w. Notice that if is very small can
remain negligible even if is quite large. This means that distributed
representations in which each word-set unit participates in the represen-
tation of many words do not lead to errors if the semantic features are
relatively sparse in the sense that each word meaning contains only a
small fraction of the total set of sememes. So the word-set units can be
fairly nonspecific provided the sememe units are fairly specific (not
shared by too many different word meanings). Some of the entries in
the table make it clear that for some values of 

p, 

there can be a negligi-
ble chance of error even though the number of word-set units is con-
siderably less ~han the number of words (the ratio of words to word-set
units is w/u 

The example described above makes many simplifying assumptions.
For example , each word-set unit is assumed to be connected to every
relevant sememe unit. If any of these connections were missing, we
could not afford to give the sememe units a threshold equal to the
number of active word-set units. To allow for missing connections we
could lower the threshold. This would increase the false-positive error
rate, but the effect may be quite small and can be compensated 
adding word-set units to increase the specificity of the word-level
representations (Willshaw, 1981). Alternatively, we could make each
word-set unit veto the sememes that do not occur in any of its words.
This scheme is robust against missing connections because the absence
of one veto can be tolerated if there are other vetos (V. Dobson , per-

sonal communication, 1984).

There are two more simplifying assumptions both of which lead to an
underestimate of the effectiveness of distributed representations for the
arbitrary mapping task. First, the calculations assume that there is no
fine-tuning procedure for incrementing some weights and decrementing
others to improve performance in the cases where the most frequent
errors occur. Second, the calculations ignore cross-connections among
the sememes. If each word meaning is a familiar stable pattern of
sememes, there will be a strong " clean-up" effect which tends to
suppress erroneous sememes as soon as the pattern of activation at the
sememe level is sufficiently close to the familiar pattern for a particular
word meaning. Interactions among the sememes also provide an expla-
nation for the ability of a single grapheme string (e. bank) to elicit
two quite different meanings. The bottom-up effect of the activated
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TABLE 1

071 0048 9.5x 10-8

0.49 086 8x 10-6

0.48 00016

1.0 0036

1.0 1.0 049

0074 3x 10-11

2.5x 10-8

1.0 l.3x 10-5

1.0 1.0 0024

160 1.0 160 1.0 160 0.10

7x 10-20

1.0 3.5x 10-11

160 1.0 160 1.0 160 00012

320 320 1.0 320

640 640 1.0 640

100 100 1.0 100 100 100 0x 10-21

100 200 1.0 200 1.0 100 200 8x 10-7

100 400 1.0 100 400 1.0 100 400 0.16

100 800 1.0 100 800 1.0 100 800

The probabilily, J. of a false-positive sememe as a function of the number of active word-
set units per word the number of words in each word-set and the probability, 

p, 

a sememe being part of a word meaning.

word-set units helps both sets of sememes , but as soon as top-down fac-
tors give an advantage to one meaning, the sememes in the other
meaning will be suppressed by competitive interactions at the sememe
level (Kawamoto & Anderson, 1984).

simulation. As soon as there are cross-connections among the
sememe units and fine-tuning of individual weights to avoid frequent
errors, the relatively straightforward probabilistic analysis given above
breaks down. To give the cross-connections time to clean up the out-

- put, it is necessary to use an iterative procedure instead of the simple
straight-through" processing in which each layer completely determines

the states of all the units in the subsequent layer in a single , synchro-
nous step. Systems containing cross-connections, feedback, and asyn-

chronous processing elements are probably more realistic, but they are
generally very hard to analyze. However , we are now beginning to dis-
cover that there are subclasses of these more complex systems that
behave in tractable ways. One example of this subclass is described in

common
Pencil

common
Pencil


common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil



102 THE POP PERSPECTIVE

more detail in Chapter 7. It uses processing elements that are
inherently stochastic. Surprisingly, the use of stochastic elements
makes these networks better at performing searches better at learning,.
and easier to analyze.

A simple network of this kind can be used to illustrate some of the
claims about the ability to " clean up " the output by using interactions
among sememe units and the ability to avoid errors by fine-tuning the
appropriate weights. The network contains 30 grapheme units, 20
word-set units , and 30 sememe units. There are no direct connections
between grapheme and sememe units, but each word-set unit is con-
nected to all the grapheme and sememe units. The grapheme units are
divided into three sets of ten , and each three-letter word has one active
unit in each group of ten (units can only have activity levels of 1 or 0).
The "meaning" of a word is chosen at random by selecting each
sememe unit to be active with a probability of 0.2. The network shown
in Figure 6 has learned to associated 20 different grapheme strings with
their chosen meanings. Each word-set unit is involved in the represen-
tation of many. words , and each word involves many word-set units.

The details of the learning procedure used to create this network and
the search procedure which is used to settle on a set of active sememes
when given the graphemic input are described in Chapter 7. Here we
simply summarize the main results of the simulation.

After a long period of learning, the network was able to produce the
correct pattern of sememes 99.9% of the time when given a graphemic
input. Removal of anyone of the word-set units after the learning typ-
ically caused a slight rise in the error rate for several different words
rather than the complete loss of one word. Similar effects have been
observed in other distributed models (Wood, 1978). In our simula-

tions, some of the erroneous responses were quite interesting. In
10,000 tests with a missing word-set unit there were 140 cases in which
the model failed to recover the right sememe pattern. Some of these
consisted of one or two missing or extra sememes , but 83 of the errors
were exactly the pattern of sememes of some other word. This is a
result of the cooperative interactions among the sememe units. If the
input coming from the word-set units is noisy or underspecified as 
may be when units are knocked out , the clean-up effect may settle on a
similar but incorrect meaning.

This effect is reminiscent of a phenomenon called deep dyslexia which
occurs with certain kinds of brain damage in adults. When shown a
word and asked to read it, the subject will sometimes say a different
word with a very similar meaning. The incorrect word sometimes has a
very different sound and spelling. For example , when shown the word
PEACH the subject might say APRICOT. (See Coltheart , Patterson

, &

Marshall, 1980, for more information about acquired dyslexia.)
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FIGURE 6. A compact display that shows all the connection strengths in a three-layer
network that can map 20 different graphemic strings into the corresponding collections of
active semantic features. The top three rows of the display are the semantic units , the
middle two rows are the intermediate units , and the bottom three rows are the grapheme
units. Within each unit, the black or white rectangles show the strengths of its connec-
tions to other units. White rectangles are positive connections , black are negative, and
the magnitude of a rectangle represents the strength of the connection. The relative posi-
tion of a rectangle within a unit indicates the relative position within the whole network
of the other unit involved in the connection (It is as if each unit contained a little map of
the whole net). All connection strengths are the same in both directions, so every
strength is represented twice in this display. In the position where the connection

between a unit and itself would be displayed , the threshold of the unit is shown (black
means a positive threshold).

Semantic errors of this kind seem bizarre because it seems as if the
subject must have accessed the lexical item PEACH in order to make
the semantically related error, and if he can get to the lexical item why
can t he say it? (These subjects may know and be able to say the
words that they misread. Distributed representations allow us to
dispense with the rigid distinction between accessing a word and not
accessing it. In a network that has learned the word PEACH, the gra-

phemic representation of PEACH will cause approximately the right
input to the sememe units , and interactions at the sememe level can
then cause exactly the pattern of sememes for APRICOT. Another
psychologically interesting effect occurs when the network relearns after
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it has been damaged. The network was damaged by adding noise to
every connection that involved a word-set unit. This reduced the

performance from 99.3% correct to 64.3%. 9 The network was then

retrained and it exhibited very rapid relearning, much faster than its
original rate of learning when its performance was 64.3% correct. This
rapid recovery was predicted by a geometrical argument which shows
that there is something special about a set of connection strengths that
is generated by adding noise to a near-perfect set. The resulting set is
very different from other sets of connection strengths that exhibit the

same performance. (See Chapter 7 for further discussion.)
An even more surprising effect occurs if a few of the words are omit-

ted from the retraining. The error rate for these words is substantially
reduced as the retraining proceeds, even though the other grapheme-

sememe pairings have no intrinsic relation to them because all the pair-
ings were selected randomly. The " spontaneous" recovery of words
that the network is not shown again is a result of the use of distributed
representations. All the weights are involved in encoding the subset of
the words that are shown during retraining, and so the added noise
tends to be removed from every weight. A scheme that used a separate
unit for each word would not behave in this way, so one can view spon-
taneous recovery of unrehearsed items as a qualitative signature of dis-
tributed representations.

STRUCTURED REPRESENTATIONS AND PROCESSES

In this section we consider two extensions of distributed representa-
tions. These extensions illustrate that the idea of distributed represen-
tations is consistent with some of the major insights from the field of
artifiCial intelligence concerning the importance of structure in
representations and processes. Perhaps because some proponents of
distributed representations have not been particularly attuned to these
issues, it is often unclear how structure is to be captured in a distri-
buted representational scheme. The two parts of this section give some
indication of the directions that can be taken in extending distributed
representations to deal with these important considerations.

9 The error rate was 99.3% rather than 99.9% in this example because the network was
forced to respond faster , so the cooperative effects had less time to settle on the optimal
output.
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Representing Constituent Structure

Any system that attempts to implement the kinds of conceptual
structures that people use has to be capable of representing two rather
different kinds of hierarchy. The first is the " IS-A" hierarchy that
relates types to instances of those types. The second is the part/ whole
hierarchy that relates items to the constituent items that they are com-
posed of. The most important characteristics of the IS-A hierarchy are
that known properties of the types must be " inherited" by the instances

and properties that are found to apply to all instances of a type must
normally be attributed to the type. Earlier in this chapter we saw how
the IS- hierarchy can be implemented by making the distributed
representation of an instance include as a subpart, the distributed
representation for the type. This representational trick automatically
yields the most important characteristics of the IS-A hierarchy, but the
trick can only be used for one kind of hierarchy. If we use the
part/ whole relationship between patterns of activity to represent the
type/instance relationship between items , it appears that we cannot also
use it to represent the part/whole relationship between items. We can-
not make the representation of the whole be the sum of the representa-
tions of its parts.

The question of how to represent the relationship between an item
and the constituent items of which it is composed has been a major
stumbling block for theories that postulate distributed representations.
In the rival , localist scheme , a whole is a node that is linked by labeled
arcs to the nodes for its parts. But the central tenet of the distributed
scheme is that different items correspond to alternative patterns of
activity in the same set of units , so it seems as if a whole and its parts
cannot both be represented at the same time.

Hinton (l981a) described one way out of this dilemma. It relies on
the fact that wholes are not simply the sums of their parts. They are
composed of parts that play particular roles within the whole structure.
A shape , for example , is composed of smaller shapes that have a partic-
ular size , orientation , and position relative to the whole. Each consti-
tuent shape has its own spatial role , and the whole shape is composed
of a set of shape/ role pairs.lO Similarly, a proposition is composed of
objects that occupy particular semantic roles in the whole propositional

10 Relalionships between parts are important as well. One advantage of explicitly
representing shape/role pairs is that it allows difTerent pairs to support each other. One
can view the various different locations within an object as slots and the shapes of parts
of an object as the fillers of these slots. Knowledge of a whole shape can then be imple-
mented by positive interactions between the various slot-fillers.
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structure. This suggests a way of implementing the relationship between
wholes and parts: The identity of each part should first be combined
with its role to produce a single pattern that represents the combination
of the identity and the role, and then the distributed representation for

the whole should consist of the sum of the distributed representations
for these identity/role combinations (plus some additional " emergent"
features). This proposal differs from the simple idea that the represen-
tation of the whole is the sum of the representations of its parts
because the subpatterns used to represent identity/role combinations
are quite different from the patterns used to represent the identities
alone. They do not , for example , contain these patterns as parts.

Naturally, there must be an access path between the representation
of an item as a whole in its own right and the representation of that
same item playing a particular role within a larger structure. It must be
possible , for example , to generate the identity/role representation from
two separate , explicit , distributed patterns one of which represents the
identity and the other of which represents the role. It must also be
possible to go the other way and generate the explicit representations of
the identity and role from the single .combined representation of the
identity / role combination (see Figure 7).

The use of patterns that represent identity/role combinations allows
the part/ whole hierarchy to be represented in the same way as the
type/instance hierarchy. We may view the whole as simply a particular
instance of a number of more general types, each of which can be
defined as the type that has a particular kind of part playing a particular
role (e. , men with wooden legs).

Sequential Symbol Processing

If constituent structure is implemented in the way described above
there is a serious issue about how many structures can be active at any
one time. The obvious way to allocate the hardware is to use a group
of units for each possible role within a structure and to make the pat-
tern of activity in this group represent the identity of the constituent
that is currently playing that role. This implies that only one structure
can be represented at a time , unless we are willing to postulate multiple
copies of the entire arrangement. One way of doing this, using units
with programmable ' rather than fixed connections, is described in
Chapter 16. However , even this technique runs into difficulties if more
than a few modules must be " programmed" at once. However, people
do seem to suffer from strong constraints on the number of structures
of the same general type that they can process at once. The
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IDENTITY

AG ENT PATIENT LOCATION

FIGURE 7. A sketch of the apparatus that might be necessary for combining separate
representations of an identity and a role into a single pattern. Only one identity and only
one role can be explicitly represented at a time because the identity and role groups can
each have only one pattern of activity at a time. However , the various role groups allow
many identity/role combinations to be encoded simultaneously. The small triangular
symbols represent the ability of the pattern of activity in the group that explictly
represents a role to determine which one of the many role groups is currently interacting
with the identity group. This allows the identity occupying a particular role to be " read
out " as well as allowing the reverse operation of combining an identity and a role.

sequentiality that they exhibit at this high level of description is initially
surprising given the massively parallel architecture of the brain , but it
becomes much easier to understand if we abandon our localist predelic-
tions in favor of the distributed alternative which uses the parallelism
to give each active representation a very rich internal structure that

allows the right kinds of generalization and content-addressability.
There may be some truth to the notion that people are sequential sym-
bol processors if each" symbolic representation " is identified with a
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- .

successive state of a large interactive network. See Chapter 1,4 for
further discussion of these issues.

One central tenet of the sequential symbol processing approach
(Newell , 1980) is the ability to focus on any part of a structure and to-
expand that into a whole that is just as rich in content as the original
whole of which it was a part. The recursive ability to expand parts of a
structure for indefinitely many levels and the inverse ability to package
up whole structures into a reduced form that allows them to be used as
constituents of larger structures is the essence of symbol processing. It
allows a system to build structures out of things that refer to other

whole structures without requiring that these other structures be
represented in all their cumbersome detail.

In conventional computer implementations , this ability is achieved by
using pointers. These are very convenient , but they depend on the use
of addresses. In a parallel network , we need something that is func-
tionally equivalent to arbitrary pointers in order to implement symbol

processing. This is exactly what is provided by subpatterns that stand
for identity/role combinations. They allow the full identity of the part
to be accessed from a representation of the whole and a representation
of the role that the system wishes to focus on, and they also allo
explicit representations of an identity and a role to be combined into a
less cumbersome representation , so that several identity/role combina-
tions can be represented simultaneously in order to form the represen-

tation of a larger structure.

SUMMARY

Given a parallel network, items can be represented by activity in a
single , local unit or by a pattern of activity in a large set of units with
each unit encoding a microfeature of the item. Distributed representa-
tions are efficient whenever there are underlying regularities which can
be captured by interactions among microfeatures. By encoding each
piece of knowledge as a large set of interactions, it is possible to
achieve useful properties like content-addressable memory and
automatic generalization , and new items can be created without having
to create new connections at the hardware level. In the domain of con':
tinuously varying spatial features it is relatively easy to provide a
mathematical analysis of the advantages and drawbacks of using distri-
buted representions.

Distributed representations seem to be unsuitable for implementing
purely arbitrary mappings because there is no underlying structure and
so generalization only causes unwanted interference. However, even
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for this task , distributed representations can be made fairly efficient and
they exhibit some psychologically interesting effects when damaged.

There are several difficult problems that must be solved before
distributed representations can be used effectively. One is to decide on

! the pattern of activity that is to be used for representing an item. The
similarities between the chosen pattern and other existing patterns will
determine the kinds of generalization and interference that occur. The
search for good patterns to use is equivalent to the search for the
underlying regularites of the domain. This learning problem is
addressed in the chapters of Part II.

Another hard problem is to clarify the relationship between distrib-
uted representations and techniques used in artificial intelligence like
schemas , or hierarchical structural descriptions. Existing artificial intel-
ligence programs have great difficulty in rapidly finding the schema that
best fits the current situation. Parallel networks offer the potential of
rapidly applying a lot of knowledge to this best-fit search, but this
potential will only be realized when there is a good way of implement-
ing schemas in parallel networks. A discussion of how this might be
done can be found in Chapter 14.
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