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ABSTRACT

The ability to automatically detect stuttering events in speech
could help speech pathologists track an individual’s fluency
over time or help improve speech recognition systems for
people with atypical speech patterns. Despite increasing in-
terest in this area, existing public datasets are too small to
build generalizable dysfluency detection systems and lack
sufficient annotations. In this work, we introduce Stuttering
Events in Podcasts (SEP-28k), a dataset containing over 28k
clips labeled with five event types including blocks, prolon-
gations, sound repetitions, word repetitions, and interjections.
Audio comes from public podcasts largely consisting of peo-
ple who stutter interviewing other people who stutter. We
benchmark a set of acoustic models on SEP-28k and the pub-
lic FluencyBank dataset and highlight how simply increasing
the amount of training data improves relative detection per-
formance by 28% and 24% F1 on each. Annotations from
over 32k clips across both datasets will be publicly released.

Index Terms— Dysfluencies, stuttering, atypical speech

1. INTRODUCTION

Dysfluencies in speech such as sound repetitions, word rep-
etitions, and blocks are common amongst everyone and are
especially prevalent in people who stutter. Frequent occur-
rences can make social interactions challenging and limit an
individual’s ability to communicate with ubiquitous speech
technology including Alexa, Siri, and Cortana [1, 2, 3, 4, 5].
In this work we investigate the ability to automatically detect
dysfluencies, which may be valuable for clinical assessment
or development of accessible speech recognition technology.

This problem is challenging because there are many vari-
ations in how a given individual expresses each dysfluency
type, in the patterns of dysfluencies between users, and even
how the situation or environment affects their speech. For
example, an individual may stutter when conversing but not
while reading aloud; when talking with a teacher but not a
friend; or when stressed before an exam but not in every
day-to-day interaction. The speech pathology community has
spent decades characterizing, developing diagnosis tools, and
developing strategies to mitigate these behaviors [6, 7, 8, 9],
however, there has been limited success in taking these learn-

Fig. 1. Speech from someone who stutters may contain events
including sound repetitions (orange), interjections (blue),
blocks/pauses (green), or other events that make speech
recognition challenging.

ings and applying them to speech recognition technology,
where individuals may be frequently cut off or have their
speech inaccurately transcribed.

A major bottleneck in this area is that dysfluency datasets
tend to be small and have few or inconsistent annotations not
inherently designed for work on speech recognition tasks.
Kourkounakis et al. [10] used 800 speech clips (53 min-
utes) with custom annotations to detect dysfluencies from 25
children who stutter using the UCLASS dataset [11]. Riad
et al. [12] performed a similar task using 1429 utterances
from 22 adults who stutter with the recent FluencyBank [13]
dataset. Bayer et al. [14] collected a 3.5 hour German dataset
with 37 speakers and developed a model for automated stut-
tering severity assessment. Unfortunately, none of the an-
notations from these efforts have been released. A core
contribution of our paper is the introduction of the Stuttering
Events in Podcasts dataset (SEP-28k) dataset which contains
28k annotated clips (23 hours) of speech curated from public
podcasts. We have released these along with annotations for
4k clips (3.5 hours) from FluencyBank targeted at stuttering
event detection.

The focus of this paper is on detection of five stut-
tering event types: Blocks, Prolongations, Sound Repe-
titions, Word/Phrase Repetitions, and Interjections. Ex-
isting work has explored this problem using traditional
signal processing techniques [15, 16, 17], language mod-
eling (LM) [12, 18, 19, 20, 21], and acoustic modeling
(AM) [21, 10]. Each approach has be shown to be effective
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Stuttering Labels Definition SEP-28k FluencyBank
Block Gasps for air or stuttered pauses 12.0% 10.3%
Prolongation Elongated syllable “M[mmm]ommy” 10.0% 8.1%
Sound Repetition Repeated syllables “I [pr-pr-pr-]prepared dinner” 8.3% 13.3%
Word/Phrase Repetition “I made [made] dinner” 9.8% 10.4%
No dysfluencies Affirmation that there are no discernable dysfluencies 56.9% 54.1%
Interjection Filler words e.g., “um,” “uh,” & “you know” 21.2% 27.3%
Non-dysfluent Labels
Natural pause A pause in speech (not as part of a stutter event) 8.5% 2.7%
Unintelligible It is difficult to understand the speech 3.7% 3.0%
Unsure An annotator was unsure of their response 0.1% 0.4%
No Speech The clip is silent or only contains background noise 1.1% -
Poor Audio Quality There are microphone or other quality issues 2.1% -
Music Music is playing in the background 1.1% -

Table 1. Distribution of annotations in each dataset where at least two of three annotators applied a given label.

at identifying one or two event types typically on data from
a small number of users. Prolongations, or extended sounds,
have been detected using short-window autocorrelations [16]
and low-level acoustic models [10]. Word/phrase repetitions,
if they are well articulated, are easily detected using LM-
based approaches [19], with the caveat that single-syllable
words such as in the phrase “I-I-I am” will often be smoothed
into “I am” due to the underlying acoustic model and phrases
like “I am [am]” may be pruned because the LM has never
seen the word “am” repeated before. This is fine for speech
recognition but bad for stuttering event analysis. Arjun
et al. [16] addressed this repetition problem by segment-
ing pairs of subsequent words and analyzing correlations in
their spectral features. Interjections, including “um”, “uh”,
“you know” and other filler words, are perhaps the easiest
type to recognize with a language model if well articulated.
Blocks, or gasps/pauses typically within or between words,
are difficult to detect because the gasp for breath or pause
is often inaudible. Sound repetitions are also challenging
because syllables may vary in duration, count, style, and
articulation (e.g.,“[moh-muh-mm]-ommy”).

Efforts in HCI have sought out an understanding of speech
recognition needs for users with speech impairments, which
is critical for framing problems like ours [1, 2, 22].

2. DATA

2.1. Stuttering Events in Podcasts (SEP-28k)

We manually curated a set of podcasts, many of which con-
tain speech from people who stutter talking with other people
who stutter, using a two step process. Shows were initial se-
lected by searching metadata from a podcast search engine
with terms related to dysfluencies such as stutter, speech dis-
order, and stammer. This resulted in approximately 40 shows
and 100s of hours of audio. Many of these were about speech
disorders but did not contain high rates of speech from people

who stutter. After culling down the data we extracted clips
from 385 episodes across 8 shows. Specific show names and
links to each episode can be found in the dataset respository.

We extracted 40−250 segments per episode for a total of
28,177 clips. Dysfluency events are more likely to occur soon
before, during, or after a pause so we used a voice activity
detector to extract 3-second intervals near pauses. We varied
where we sampled each interval with respect to a breakpoint
to capture a more representative set of dysfluencies.

2.2. FluencyBank

We used all of the FluencyBank [13] interview data which
contains recordings from 32 adults who stutter. As with Riad
et al. [12] we found the temporal alignment for some tran-
scriptions and dysfluency annotations provided were inaccu-
rate, so we ignored these and used the same process as SEP-
28k to annotate 4,144 clips (3.5 hours).

2.3. Annotations

Annotating stuttering data is difficult because of ambiguity in
what constitutes stuttering for a given individual. Repetitions,
for example, can occur during stuttering events or when an in-
dividual wants to emphasize a word or phrase. Speech may
be unintelligible which makes it challenging to identify how
a word was stuttered. We annotated our data using a variant
of time-interval based assessment [8] in which audio record-
ings are broken into 3 second clips and annotated with binary
labels as defined in Table 1. A clip may contain multiple stut-
tering event types along with non-dysfluency labels such as
natural pause and unintelligible speech. SEP-28k was also
annotated with: no speech, poor audio quality, and music to
identify issues specific to this medium.

Clips were annotated by at least three people who received
training via written descriptions, examples, and audio clips



on how to best identify each dysfluency but were not clini-
cians. We measured Fleiss Kappa inter-annotator agreement
and found word repetitions, interjections, sound repetitions,
and no dysfluencies were more consistent (0.62, 0.57, 0.40,
0.39) and blocks and prolongations had only fair or slight
agreement (0.25, 0.11). Blocks can be difficult to assess from
audio alone; clinicians often rely on physical signs of grasp-
ing for air when making this assessment. As such, results
when using the block labels should be more speculative.

2.4. Evaluation & Metrics

We use F1 score and Equal Error Rate to evaluate dysflu-
ency detection where each annotation constitutes a binary la-
bel. F1 is the harmonic mean of precision (P ) and recall (R):
F1 = 2 P ·R

P+R . Equal Error Rate (EER) is the point in the Re-
ceiver Operating Characteristic (ROC) curve where the false
acceptance rate is equal to the false rejection rate and reflects
how well the two classes are separated. The lower the EER,
the better the performance of the model. We report results for
each label individually and as a combined “Any” label which
includes all five stutter types.

SEP-28k is partitioned into three splits containing 25k
samples for training, 2k for validation, and 1k for testing.
FluencyBank is partitioned across the 32 individuals in the
dataset: 26 individuals (∼3.6k clips) for training, 3 (∼500
clips) for validation, and 3 (∼500 clips) for testing. We en-
courage others to explore alternative splits to tease out differ-
ences between speakers, podcasts, or other analyses.

3. METHODS

Our approach takes an audio clip, extracts acoustic features
per-frame, applies a temporal model, and outputs a single set
of clip-level dysfluency labels. We investigated baselines that
are inspired by the dysfluency model in [10] and alternative
input features, model architectures, and loss functions.

3.1. Acoustic Features

Our baseline input is a set of 40 dimensional mel-filterbank
energy features (MFB). We use frequency cut-offs at 0 hz
and 8000 hz, a 25 ms window, and a sample rate of 100 hz.
We compare with three additional feature types:

• F0 (3 dim): pitch, pitch-delta and voicing features;
• ATV (8 dim): articulatory features in the form of vocal-

tract (TV ) constriction variables [23]. These define de-
gree and location of constriction actions within the hu-
man vocal tract [23, 24] as implemented in [25];

• FPhone (41 dim): phoneme probabilities extracted
from an acoustic model trained on LibriSpeech [26]
using a Time-depth Separable CNN architecture [27].

Pitch, voicing, and articulatory features encode voice quality
and often change across dysfluency events. We hypothesize

Fig. 2. Multi-feature acoustic stutter detection model

these may improve detection of blocks or gasps. Phoneme
probabilities may make it easier to identify sound repetitions
where the same phoneme fires multiple times in a row.

3.2. Model Architectures

The baseline stutter detection model consists of a single-layer
LSTM network and an improved model adds convolutional
layers per-feature type and learns how the features should be
weighted, as shown in Figure 2. We refer to the latter as Con-
vLSTM. Feature maps from the convolution layer are com-
bined after batch normalization and fed to the LSTM layer.
The temporal convolution size for MFB feature was set to
3 frames and for the remaining features were set to 5 frames.
We use unidirectional recurrent networks where the final state
is fed into the per-clip classifier. Both models have two output
branches: a fluent/dysfluent prediction and a soft prediction
for each of the five event types.

3.3. Loss functions

The baseline model has a single cross-entropy loss term.
Our improved models are trained with a multi-task objec-
tive where the fluent/dysfluent branch has a weighted cross-
entropy term with focal loss [28] and the per-dysfluency
branch has a concordance correlation coefficient (CCC) loss
using the inter-annotator agreement for each clip.



Table 2. Weighted Accuracy (WA), F1-score and Equal Er-
rors Rate (EER) from each model on FluencyBank (eval).

WA ↑ F1 ↑ EER ↓
Baseline (LSTM, XEnt)
FPhone 74.6 74.8 24.7
MFB 77.7 75.8 23.8
MFB + F0 81.6 81.8 18.0
MFB + F0 +ATV 81.8 80.1 19.0
Improved (ConvLSTM, CCC)
FPhone 80.8 80.2 17.1
MFB 83.0 81.9 16.1
MFB + F0 83.4 82.7 16.9
MFB + F0 +ATV 83.6 83.6 16.9

Models were trained with a mini-batch size of 256, us-
ing the Adam optimizer, with an initial learning rate of 0.01.
Early stopping was used based on cross-validation error. Net-
works had 64 neurons in recurrent and embedding layers.

4. EXPERIMENTS & ANALYSIS

4.1. Model Design

Table 2 compares performance across features and architec-
tures types. Spectral features with pitch generally perform
well and when using the improved model achieve best perfor-
mance when adding articulatory signals. This improvement
matches our intuition that variation in intonation and articu-
lation coincides with dysfluent speech. The phoneme-based
models perform worst, despite their ability to extract features
one might think would be useful for sound repetitions. The
ConvLSTM and CCC loss moderately improve F1, likely be-
cause this loss explicitly encodes uncertainty in annotators.

Table 3 shows performance per-dysfluency type. Perfor-
mance is worse for Blocks and Word Repetitions. These dys-
fluencies tend to last longer in time and have more variation in
expression, which may contribute to the lower performance.
Interjections and prolongations tend to have less variability
and are easier to detect. SEP-28k performance is consistently
worse than FluencyBank, likely given the larger variety of in-
dividuals and speaking styles.

4.2. Data Quantity & Type

The central hypothesis for this work was that existing datasets
are too small and contain too few participants for training ef-
fective dysfluency detection models. This is corroborated by
results in Figure 3 which shows performance on SEP-28k and
FluencyBank while training on different subsets. In the best
case, there is a 24% relative F1 improvement in FluencyBank
when training on all 25k SEP training samples compared to
the 3k FluencyBank set. Even using only 5k SEP clips already
performs FluencyBank performance by 16% F1. This could

Table 3. F1 score per dysfluency type with a baseline LSTM
model (XEnt loss) trained using single- or multi-task learn-
ing (STL, MTL) and the Improved ConvLSTM model (CCC
loss). Bl=Block, Pro=Prolongation, Snd=Sound Repetition,
Wd=Word Repetition, Int=Interjection

SEP-28k Bl Pro Snd Wd Int Any
Random 13.7 12.8 9.5 4.3 13.6 46.0
Baseline (STL) 54.9 65.4 57.2 60.7 64.9 61.5
Baseline (MTL) 56.4 65.1 60.5 56.2 69.5 64.5
Improved 55.9 68.5 63.2 60.4 71.3 66.8
FluencyBank Bl Pro Snd Wd Int Any
Random 12.9 10.7 28.2 10.3 31.7 31.7
Baseline (STL) 58.6 63.2 60.8 61.8 57.2 73.2
Baseline (MTL) 54.6 67.6 74.2 55.8 75.0 74.8
Improved 56.8 67.9 74.3 59.3 82.6 80.8

Fig. 3. Test performance when training models only on Flu-
encyBank clips or subsets of clips from SEP-28k.

be because there are a larger number of users in the dataset
and the data contains more variability in speaking styles. As
expected, performance on SEP-28k is worst when training on
FluencyBank and increases with larger numbers of training
samples.

5. CONCLUSION

We introduced SEP-28, which contains over an order of mag-
nitude more annotations than existing public datasets and
added new annotations to FluencyBank. These annotations
can be used for many tasks so we encourage others to ex-
plore the data, labels, and splits in ways beyond what was
is described here. Future work should explore alternative
approaches, e.g., using language models, which may improve
performance for some dysfluency types that are more difficult
to detect. Lastly, while dysfluencies are most common in
those who stutter, future work should address how they can
be detected from people with other speech disorders, such as
dysarthria, which may be characterized differently.

Acknowledgment: Thanks to Lauren Tooley for countless
discussions on the clinical aspects of stuttering.
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