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Abstract

Building instance segmentation models that are data-

efficient and can handle rare object categories is an

important challenge in computer vision. Leveraging data

augmentations is a promising direction towards addressing

this challenge. Here, we perform a systematic study of

the Copy-Paste augmentation (e.g., [13, 12]) for instance

segmentation where we randomly paste objects onto an

image. Prior studies on Copy-Paste relied on modeling the

surrounding visual context for pasting the objects. How-

ever, we find that the simple mechanism of pasting objects

randomly is good enough and can provide solid gains on

top of strong baselines. Furthermore, we show Copy-Paste

is additive with semi-supervised methods that leverage

extra data through pseudo labeling (e.g. self-training).

On COCO instance segmentation, we achieve 49.1 mask

AP and 57.3 box AP, an improvement of +0.6 mask AP

and +1.5 box AP over the previous state-of-the-art. We

further demonstrate that Copy-Paste can lead to significant

improvements on the LVIS benchmark. Our baseline model

outperforms the LVIS 2020 Challenge winning entry by

+3.6 mask AP on rare categories. 1

1. Introduction

Instance segmentation [22, 10] is an important task in

computer vision with many real world applications. In-

stance segmentation models based on state-of-the-art con-

volutional networks [11, 57, 67] are often data-hungry.

At the same time, annotating large datasets for instance

segmentation [40, 21] is usually expensive and time-

consuming. For example, 22 worker hours were spent per

∗Equal contribution. Correspondence to: golnazg@google.com.
†Work done during an internship at Google Research.
1Code and checkpoints for our models are available at https:

//github.com/tensorflow/tpu/tree/master/models/

official/detection/projects/copy_paste
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Figure 1. Data-efficiency on the COCO benchmark: Combining

the Copy-Paste augmentation along with Strong Aug. (large scale

jittering) allows us to train models that are up to 2× more data-

efficient than Standard Aug. (standard scale jittering). The aug-

mentations are highly effective and provide gains of +10 AP in

the low data regime (10% of data) while still being effective in the

high data regime with a gain of +5 AP. Results are for Mask R-

CNN EfficientNet-B7 FPN trained on an image size of 640×640.

1000 instance masks for COCO [40]. It is therefore impera-

tive to develop new methods to improve the data-efficiency

of state-of-the-art instance segmentation models.

Here, we focus on data augmentation [50] as a simple

way to significantly improve the data-efficiency of instance

segmentation models. Although many augmentation meth-

ods such as scale jittering and random resizing have been

widely used [26, 25, 20], they are more general-purpose

in nature and have not been designed specifically for in-

stance segmentation. An augmentation procedure that is

more object-aware, both in terms of category and shape,

is likely to be useful for instance segmentation. The Copy-

Paste augmentation [13, 12, 15] is well suited for this need.

By pasting diverse objects of various scales to new back-

ground images, Copy-Paste has the potential to create chal-

lenging and novel training data for free.
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Figure 2. We use a simple copy and paste method to create new images for training instance segmentation models. We apply random scale

jittering on two random training images and then randomly select a subset of instances from one image to paste onto the other image.

The key idea behind the Copy-Paste augmentation is to

paste objects from one image to another image. This can

lead to a combinatorial number of new training data, with

multiple possibilities for: (1) choices of the pair of source

image from which instances are copied, and the target im-

age on which they are pasted; (2) choices of object instances

to copy from the source image; (3) choices of where to paste

the copied instances on the target image. The large variety

of options when utilizing this data augmentation method al-

lows for lots of exploration on how to use the technique

most effectively. Prior work [12, 15] adopts methods for de-

ciding where to paste the additional objects by modeling the

surrounding visual context. In contrast, we find that a sim-

ple strategy of randomly picking objects and pasting them at

random locations on the target image provides a significant

boost on top of baselines across multiple settings. Specif-

ically, it gives solid improvements across a wide range of

settings with variability in backbone architecture, extent of

scale jittering, training schedule and image size.

In combination with large scale jittering, we show that

the Copy-Paste augmentation results in significant gains in

the data-efficiency on COCO (Figure 1). In particular, we

see a data-efficiency improvement of 2× over the com-

monly used standard scale jittering data augmentation. We

also observe a gain of +10 Box AP on the low-data regime

when using only 10% of the COCO training data.

We then show that the Copy-Paste augmentation strategy

provides additional gains with self-training [44, 73] wherein

we extract instances from ground-truth data and paste them

onto unlabeled data annotated with pseudo-labels. Using

an EfficientNet-B7 [56] backbone and NAS-FPN [17] ar-

chitecture, we achieve 57.3 Box AP and 49.1 Mask AP on

COCO test-dev without test-time augmentations. This

result surpasses the previous state-of-the-art instance seg-

mentation models such as SpineNet [11] (46.3 mask AP)

and DetectoRS ResNeXt-101-64x4d with test time aug-

mentation [43] (48.5 mask AP). The performance also sur-

passes state-of-the-art bounding box detection results of

EfficientDet-D7x-1536 [57] (55.1 box AP) and YOLOv4-

P7-1536 [61] (55.8 box AP) despite using a smaller image

size of 1280 instead of 1536.

Finally, we show that the Copy-Paste augmentation re-

sults in better features for the two-stage training procedure

typically used in the LVIS benchmark [21]. Using Copy-

Paste we get improvements of 6.1 and 3.7 mask AP on the

rare and common categories, respectively.

The Copy-Paste augmentation strategy is easy to plug

into any instance segmentation codebase, can utilize un-

labeled images effectively and does not create training or

inference overheads. For example, our experiments with

Mask-RCNN show that we can drop Copy-Paste into its

training, and without any changes, the results can be eas-

ily improved, e.g., by +1.0 AP for 48 epochs.

2. Related Work

Data Augmentations. Compared to the volume of work

on backbone architectures [35, 51, 53, 27, 56] and detec-

tion/segmentation frameworks [19, 18, 47, 38, 26, 39], rel-

atively less attention is paid to data augmentations [50]

in the computer vision community. Data augmentations

such as random crop [36, 35, 51, 53], color jittering [53],

Auto/RandAugment [6, 7] have played a big role in achiev-

ing state-of-the-art results on image classification [27, 56],

self-supervised learning [28, 24, 5] and semi-supervised

learning [64] on the ImageNet [48] benchmark. These

augmentations are more general purpose in nature and are

mainly used for encoding invariances to data transforma-

tions, a principle well suited for image classification [48].

Mixing Image Augmentations. In contrast to augmenta-

tions that encode invariances to data transformations, there

exists a class of augmentations that mix the information
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contained in different images with appropriate changes to

groundtruth labels. A classic example is the mixup data

augmentation [66] method which creates new data points

for free from convex combinations of the input pixels and

the output labels. There have been adaptations of mixup

such as CutMix [65] that pastes rectangular crops of an im-

age instead of mixing all pixels. There have also been appli-

cations of mixup and CutMix to object detection [69]. The

Mosaic data augmentation method employed in YOLO-

v4 [1] is related to CutMix in the sense that one creates a

new compound image that is a rectangular grid of multi-

ple individual images along with their ground truths. While

mixup, CutMix and Mosaic are useful in combining multi-

ple images or their cropped versions to create new training

data, they are still not object-aware and have not been de-

signed specifically for the task of instance segmentation.

Copy-Paste Augmentation. A simple way to combine in-

formation from multiple images in an object-aware manner

is to copy instances of objects from one image and paste

them onto another image. Copy-Paste is akin to mixup and

CutMix but only copying the exact pixels corresponding to

an object as opposed to all pixels in the object’s bounding

box. One key difference in our work compared to Con-

textual Copy-Paste [12] and InstaBoost [15] is that we do

not need to model surrounding visual context to place the

copied object instances. A simple random placement strat-

egy works well and yields solid improvements on strong

baseline models. Instaboost [15] differs from prior work on

Copy-Paste [12] by not pasting instances from other images

but rather by jiterring instances that already exist on the im-

age. Cut-Paste-and-Learn [13] proposes to extract object in-

stances, blend and paste them on diverse backgrounds and

train on the augmented images in addition to the original

dataset. Our work uses the same method with some differ-

ences: (1) We do not use geometric transformations (e.g.

rotation), and find Gaussian blurring of the pasted instances

not beneficial; (2) We study Copy-Paste in the context of

pasting objects contained in one image into another image

already populated with instances where [13] studies Copy-

Paste in the context of having a bank of object instances and

background scenes to improve performance; (3) We study

the efficacy of Copy-Paste in the semi-supervised learning

setting by using it in conjunction with self-training. (4) We

benchmark and thoroughly study Copy-Paste on the widely

used COCO and LVIS datasets while Cut-Paste-and-Learn

uses the GMU dataset [16]. A key contribution is that our

paper shows the use of Copy-Paste in improving state-of-

the-art instance segmentation models on COCO and LVIS.

Instance Segmentation. Instance segmentation [22, 23] is

a challenging computer vision problem that attempts to both

detect object instances and segment the pixels correspond-

ing to each instance. Mask-RCNN [26] is a widely used

framework with most state-of-the-art methods [67, 11, 43]

adopting that approach. The COCO dataset is the widely

used benchmark for measuring progress. We report state-

of-the-art2 results on the COCO benchmark surpassing

SpineNet [11] by 2.8 AP and DetectoRS [43] by 0.6 AP.3

Copy and paste approach is also used for weakly su-

pervised instance segmentation. Remez et al. [45] intro-

duce an adversarial approach where it uses a generator net-

work to predict the segmentation mask of an object within a

given bounding box. Given the generated mask, the object

is blended on another background and then a discrimina-

tor network is used to make sure the generated mask/image

looks realistic. Different from this work, we use Copy-Paste

as an augmentation method.

Long-Tail Visual Recognition. Recently, the computer vi-

sion community has begun to focus on the long-tail na-

ture of object categories present in natural images [59, 21],

where many of the different object categories have very few

labeled images. Modern approaches for addressing long-

tail data when training deep networks can be mainly divided

into two groups: data re-sampling [41, 21, 62] and loss re-

weighting [30, 8, 3, 54, 37, 46]. Other more complicated

learning methods (e.g., meta-learning [63, 29, 32], causal

inference [58], Bayesian methods [34], etc.) are also used to

deal with long-tail data. Recent work [9, 3, 33, 71, 37] has

pointed out the effectiveness of two-stage training strate-

gies by separating the feature learning and the re-balancing

stage, as end-to-end training with re-balancing strategies

could be detrimental to feature learning. A more compre-

hensive summary of data imbalance in object detection can

be found in Oksuz et al. [42]. Our work demonstrates sim-

ple Copy-Paste data augmentation yields significant gains in

both single-stage and two-stage training on the LVIS bench-

mark, especially for rare object categories.

3. Method

Our approach for generating new data using Copy-Paste

is very simple. We randomly select two images and ap-

ply random scale jittering and random horizontal flipping

on each of them. Then we select a random subset of objects

from one of the images and paste them onto the other image.

Lastly, we adjust the ground-truth annotations accordingly:

we remove fully occluded objects and update the masks and

bounding boxes of partially occluded objects.

Unlike [15, 12], we do not model the surrounding con-

text and, as a result, generated images can look very dif-

ferent from real images in terms of co-occurrences of ob-

jects or related scales of objects. For example, giraffes and

2Based on the entries in https://paperswithcode.com/

sota/instance-segmentation-on-coco.
3We note that better mask / box AP on COCO have been reported

in COCO competitions in 2019 - https://cocodataset.org/

workshop/coco-mapillary-iccv-2019.html.
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(a) Standard Scale Jittering (SSJ) (b) Large Scale Jittering (LSJ)

Figure 3. Notation and visualization of the two scale jittering augmentation methods used throughout the paper. Standard Scale Jittering

(SSJ) resizes and crops an image with a resize range of 0.8 to 1.25 of the original image size. The resize range in Large Scale Jittering

(LSJ) is from 0.1 to 2.0 of the original image size. If images are made smaller than their original size, then the images are padded with

gray pixel values. Both scale jittering methods also use horizontal flips.

soccer players with very different scales can appear next to

each other (see Figure 2).

Blending Pasted Objects. For composing new objects into

an image, we compute the binary mask (α) of pasted objects

using ground-truth annotations and compute the new image

as I1 × α+ I2 × (1− α) where I1 is the pasted image and

I2 is the main image. To smooth out the edges of the pasted

objects we apply a Gaussian filter to α similar to “blending”

in [13]. But unlike [13], we also found that simply compos-

ing without any blending has similar performance.

Large Scale Jittering. We use two different types of

augmentation methods in conjunction with Copy-Paste

throughout the text: standard scale jittering (SSJ) and large

scale jittering (LSJ). These methods randomly resize and

crop images. See Figure 3 for a graphical illustration of the

two methods. In our experiments we observe that the large

scale jittering yields significant performance improvements

over the standard scale jittering used in most prior works.

Self-training Copy-Paste. In addition to studying Copy-

Paste on supervised data, we also experiment with it as a

way of incorporating additional unlabeled images. Our self-

training Copy-Paste procedure is as follows: (1) train a su-

pervised model with Copy-Paste augmentation on labeled

data, (2) generate pseudo labels on unlabeled data, (3) paste

ground-truth instances into pseudo labeled and supervised

labeled images and train a model on this new data.

4. Experiments

4.1. Experimental Settings

Architecture. We use Mask R-CNN [26] with Efficient-

Net [56] or ResNet [27] as the backbone architecture. We

also employ feature pyramid networks [38] for multi-scale

feature fusion. We use pyramid levels from P2 to P6, with

an anchor size of 8 × 2l and 3 anchors per pixel. Our

strongest model uses Cascade R-CNN [2], EfficientNet-B7

as the backbone and NAS-FPN [17] as the feature pyramid

with levels from P3 to P7. The anchor size is 4 × 2l and

we have 9 anchors per pixel. Our NAS-FPN model uses 5

repeats and we replace convolution layers with ResNet bot-

tleneck blocks [27].

Training Parameters. All models are trained using syn-

chronous batch normalization [31, 20] using a batch size of

256 and weight decay of 4e-5. We use a learning rate of

0.32 and a step learning rate decay [25]. At the beginning

of training the learning rate is linearly increased over the

first 1000 steps from 0.0032 to 0.32. We decay the learn-

ing rate at 0.9, 0.95 and 0.975 fractions of the total number

of training steps. We initialize the backbone of our largest

model from an ImageNet checkpoint pre-trained with self-

training [64] to speed up the training. All other results are

from models with random initialization unless otherwise

stated. Also, we use large scale jittering augmentation for

training the models unless otherwise stated. For all differ-

ent augmentations and dataset sizes in our experiments we

allow each model to train until it converges (i.e., the vali-

dation set performance no longer improves). For example,

training a model from scratch with large scale jittering and

Copy-Paste augmentation requires 576 epochs while train-

ing with only standard scale jittering takes 96 epochs. For

the self-training experiments we double the batch size to

512 while we keep all the other hyper-parameters the same

with the exception of our largest model where we retain the

batch size of 256 due to memory constraints.

Dataset. We use the COCO dataset [40] which has 118k

training images. For self-training experiments, we use

the unlabeled COCO dataset (120k images) and the Ob-

jects365 dataset [49] (610k images) as unlabeled images.

For transfer learning experiments, we pre-train our models

on the COCO dataset and then fine-tune on the Pascal VOC

dataset [14]. For semantic segmentation, we train our mod-
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Figure 4. Copy-Paste provides gains that are robust to training configurations. We train Mask R-CNN (ResNet-50 FPN) on 1024×1024

image size for varying numbers of epochs. Left Figure: Copy-Paste with and without initializing the backbone by ImageNet pre-training.

Right Figure: Copy-Paste with standard and large scale jittering. Across all of the configurations training with Copy-Paste is helpful.

els on the train set (1.5k images) of the PASCAL VOC

2012 segmentation dataset. For detection, we train on the

trainval set of PASCAL VOC 2007 and PASCAL VOC

2012. We also benchmark Copy-Paste on LVIS v1.0 (100k

training images) and report results on LVIS v1.0 val (20k

images). LVIS has 1203 classes to simulate the long-tail

distribution of classes in natural images.

4.2. Copy­Paste is robust to training configurations

In this section we show that Copy-Paste is a strong data

augmentation method that is robust across a variety of train-

ing iterations, models and training hyperparameters.

Robustness to backbone initialization. Common prac-

tice for training Mask R-CNN is to initialize the back-

bone with an ImageNet pre-trained checkpoint. However

He et al. [25] and Zoph et al. [73] show that a model

trained from random initialization has similar or better per-

formance with longer training. Training models from Ima-

geNet pre-training with strong data-augmentation (i.e. Ran-

dAugment [7]) was shown to hurt the performance by up

to 1 AP on COCO. Figure 4 (left) demonstrates that Copy-

Paste is additive in both setups and we get the best result

using Copy-Paste augmentation and random initialization.

Robustness to training schedules. A typical training

schedule for Mask R-CNN in the literature is only 24 (2×)

or 36 epochs (3×) [25, 26, 15]. However, recent work with

state-of-the-art results show that longer training is helpful

in training object detection models on COCO [73, 57, 11].

Figure 4 shows that we get gains from Copy-Paste for the

typical training schedule of 2× or 3× and as we increase

training epochs the gain increases. This shows that Copy-

Paste is a very practical data augmentation since we do not

need a longer training schedule to see the benefit.

Copy-Paste is additive to large scale jittering augmen-

tation. Random scale jittering is a powerful data augmen-

tation that has been used widely in training computer vi-

sion models. The standard range of scale jittering in the

literature is 0.8 to 1.25 [39, 25, 6, 15]. However, augment-

ing data with larger scale jittering with a range of 0.1 to

2.0 [57, 11] and longer training significantly improves per-

formance (see Figure 4, right plot). Figure 5 demonstrates

that Copy-Paste is additive to both standard and large scale

jittering augmentation and we get a higher boost on top of

standard scale jittering. On the other hand, as it is shown in

Figure 5, mixup [66, 69] data augmentation does not help

when it is used with large scale jittering.

Copy-Paste works across backbone architectures and

image sizes. Finally, we demonstrate Copy-Paste helps

models with standard backbone architecture of ResNet [27]

as well the more recent architecture of EfficientNet [56].

We train models with these backbones on the image size of

640×640, 1024×1024 or 1280×1280. Table 1 shows that

we get significant improvements over the strong baselines

trained with large scale jittering for all the models. Across

6 models with different backbones and images sizes Copy-

Paste gives on average a 1.3 box AP and 0.8 mask AP im-

provement on top of large scale jittering.

4.3. Copy­Paste helps data­efficiency

In this section, we show Copy-Paste is helpful across

a variety of dataset sizes and helps data efficiency. Fig-

ure 5 reveals that Copy-Paste augmentation is always help-

ful across all fractions of COCO. Copy-Paste is most help-

ful in the low data regime (10% of COCO) yielding a 6.9

box AP improvement on top of SSJ and a 4.8 box AP im-

provement on top of LSJ. On the other hand, mixup is only

helpful in a low data regime. Copy-Paste also greatly helps

with data-efficiency: a model trained on 75% of COCO with

Copy-Paste and LSJ has a similar AP to a model trained on

100% of COCO with LSJ.
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Figure 5. Copy-Paste is additive to large scale jittering augmentation. Improvement from mixup and Copy-Paste data augmentation on top

of standard scale jittering (Left Figure) and large scale jittering (Right Figure). All results are from training Mask R-CNN EfficientNetB7-

FPN on the image size of 640×640.

Model FLOPs Box AP Mask AP

Res-50 FPN (1024) 431 B 47.2 41.8

w/ Copy-Paste 431 B (+1.0) 48.2 (+0.6) 42.4

Res-101 FPN (1024) 509 B 48.4 42.8

w/ Copy-Paste 509 B (+1.4) 49.8 (+0.8) 43.6

Res-101 FPN (1280) 693 B 49.1 43.1

w/ Copy-Paste 693 B (+1.2) 50.3 (+1.1) 44.2

Eff-B7 FPN (640) 286 B 48.5 42.7

w/ Copy-Paste 286 B (+1.5) 50.0 (+1.0) 43.7

Eff-B7 FPN (1024) 447 B 50.8 44.7

w/ Copy-Paste 447 B (+1.1) 51.9 (+0.5) 45.2

Eff-B7 FPN (1280) 595 B 51.1 44.8

w/ Copy-Paste 595 B (+1.5) 52.6 (+1.1) 45.9

Table 1. Copy-paste works well across a variety of different model

architectures, model sizes and image resolutions. See table 13 in

the Appendix for benchmark results on different object sizes.

Setup Box AP Mask AP

Eff-B7 FPN (640) 48.5 42.7

w/ self-training (+1.5) 50.0 (+1.3) 44.0

w/ Copy-Paste (+1.5) 50.0 (+1.0) 43.7

w/ self-training Copy-Paste (+2.9) 51.4 (+2.3) 45.0

Table 2. Copy-Paste and self-training are additive for utilizing ex-

tra unlabeled data. We get significant improvement of 2.9 box AP

and 2.3 mask AP by combining self-training and Copy-Paste.

4.4. Copy­Paste and self­training are additive

In this section, we demonstrate that a standard self-

training method similar to [64, 73] and Copy-Paste can be

combined together to leverage unlabeled data. Copy-Paste

and self-training individually have similar gains of 1.5 box

AP over the baseline with 48.5 Box AP (see Table 2).

To combine self-training and Copy-Paste we first use a

supervised teacher model trained with Copy-Paste to gener-

ate pseudo labels on unlabeled data. Next we take ground

truth objects from COCO and paste them into pseudo la-

beled images and COCO images. Finally, we train the stu-

Setup Pasting into Box AP Mask AP

self-training - 50.0 44.0

+Copy-Paste COCO (+0.4) 50.4 44.0

+Copy-Paste Pseudo data (+0.8) 50.8 (+0.5) 44.5

+Copy-Paste COCO &

Pseudo data

(+1.4) 51.4 (+1.0) 45.0

Table 3. Pasting ground-truth COCO objects into both COCO and

pseudo labeled data gives higher gain in comparison to doing ei-

ther on its own.

dent model on all these images. With this setup we achieve

51.4 box AP, an improvement of 2.9 AP over the baseline.

Data to Paste on. In our self-training setup, half of the

batch is from supervised COCO data (120k images) and

the other half is from pseudo labeled data (110k images

from unlabeled COCO and 610k from Objects365). Table 3

presents results when we paste COCO instances on differ-

ent portions of the training images. Pasting into pseudo la-

beled data yields larger improvements compared to pasting

into COCO. Since the number of images in the pseudo la-

beled set is larger, using images with more variety as back-

ground helps Copy-Paste. We get the maximum gain over

self-training (+1.4 box AP ) when we paste COCO instances

on both COCO and pseudo labeled images.

Data to Copy from. We also explore an alternative way to

use Copy-Paste to incorporate extra data by pasting pseudo

labeled objects from an unlabeled dataset directly into the

COCO labeled dataset. Unfortunately, this setup shows no

additional AP improvements.

4.5. Copy­Paste improves COCO state­of­the­art

Next we study if Copy-Paste can improve state-of-the-art

instance segmentation methods on COCO. Table 4 shows

the results of applying Copy-Paste on top of a strong 54.8

box AP COCO model. This table is meant to serve as
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Model FLOPs # Params APval APtest-dev Mask APval Mask APtest-dev

SpineNet-190 (1536) [11] 2076B 176M 52.2 52.5 46.1 46.3

DetectoRS ResNeXt-101-64x4d [43] — — — 55.7† — 48.5 †

SpineNet-190 (1280) [11] 1885B 164M 52.6 52.8 — —

SpineNet-190 (1280) w/ self-training [72] 1885B 164M 54.2 54.3 — —

EfficientDet-D7x (1536) [57] 410B 77M 54.4 55.1 — —

YOLOv4-P7 (1536) [61] — — — 55.8† — —

Cascade Eff-B7 NAS-FPN (1280) 1440B 185M 54.5 54.8 46.8 46.9

w/ Copy-Paste 1440B 185M (+1.4) 55.9 (+1.2) 56.0 (+0.4) 47.2 (+0.5) 47.4

w/ self-training Copy-Paste 1440B 185M (+2.5) 57.0 (+2.5) 57.3 (+2.1) 48.9 (+2.2) 49.1

Table 4. Comparison with the state-of-the-art models on COCO object detection and instance segmentation. Parentheses next to the model

name denote the input image size. † indicates results with test time augmentation.

Model AP50 AP

RefineDet512+ [68] 83.8 -

SNIPER [52] 86.9 -

Cascade Eff-B7 NAS-FPN 88.6 75.0

w/ Copy-Paste pre-training (+0.7) 89.3 (+1.5) 76.5

Table 5. PASCAL VOC 2007 detection result on test set.

We present results of our EfficientNet-B7 NAS-FPN model pre-

trained with and without Copy-Paste on COCO.

a reference for state-of-the-art performance.4 For rigor-

ous comparisons, we note that models need to be evalu-

ated with the same codebase, training data, and training

settings such as learning rate schedule, weight decay, data

pre-processing and augmentations, controlling for param-

eters and FLOPs, architectural regularization [60], train-

ing and inference speeds, etc. The goal of the table is to

show the benefits of the Copy-Paste augmentation and its

additive gains with self-training. Our baseline model is a

Cascade Mask-RCNN with EfficientNet-B7 backbone and

NAS-FPN. We observe an improvement of +1.2 box AP

and +0.5 mask AP using Copy-Paste. When combined

with self-training using unlabeled COCO and unlabeled

Objects365 [49] for pseudo-labeling, we see a further im-

provement of 2.5 box AP and 2.2 mask AP, resulting in a

model with a strong performance of 57.3 box AP and 49.1

mask AP on COCO test-dev without test-time augmen-

tations and model ensembling.

4.6. Copy­Paste produces better representations for
PASCAL detection and segmentation

Previously we have demonstrated the improved perfor-

mance that the simple Copy-Paste augmentation provides

on instance segmentation. In this section we study the

transfer learning performance of the pre-trained instance

segmentation models that were trained with Copy-Paste on

COCO. Here we perform transfer learning experiments on

the PASCAL VOC 2007 dataset. Table 5 shows how the

learned Copy-Paste models transfer compared to baseline

4https : / / paperswithcode . com / sota / object -

detection-on-coco

Model mIOU

DeepLabv3+ † [4] 84.6

ExFuse † [70] 85.8

Eff-B7 [73] 85.2

Eff-L2 [73] 88.7

Eff-B7 NAS-FPN 83.9

w/ Copy-Paste pre-training (+2.7) 86.6

Table 6. PASCAL VOC 2012 semantic segmentation results on

val set. We present results of our EfficientNet-B7 NAS-FPN

model pre-trained with and without Copy-Paste on COCO. † in-

dicates multi-scale/flip ensembling inference.

models on PASCAL detection. Table 6 shows the trans-

fer learning results on PASCAL semantic segmentation as

well. On both PASCAL detection and PASCAL semantic

segmentation we find our models trained with Copy-Paste

transfer better for fine-tuning than the baseline models.

4.7. Copy­Paste provides strong gains on LVIS

We benchmark Copy-Paste on the LVIS dataset to see

how it performs on a dataset with a long-tail distribution of

1203 classes. There are two different training paradigms

typically used for LVIS: (1) single-stage where a detector

is trained directly on the LVIS dataset, (2) two-stage where

the model from the first stage is fine-tuned with class re-

balancing losses to help handle the class imbalance.

Copy-Paste improves single-stage LVIS training. The

single-stage training paradigm is quite similar to our Copy-

Paste setup on COCO. In addition to the standard training

setup, certain methods are used to handle the class imbal-

ance problem on LVIS. One common method is Repeat Fac-

tor Sampling (RFS) from [21], with t = 0.001. This method

aims at helping the large class imbalance problem on LVIS

by over-sampling images that contain less frequent object

categories. For single-stage training on LVIS, we follow

the same training parameters on COCO to train our models

for 180k steps using a 256 batch size. As suggested by [21],

we increase the number of detections per image to 300 and

reduce the score threshold to 0. Table 8 shows the results

of applying Copy-Paste to a strong single-stage LVIS base-
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Mask AP Mask APr Mask APc Mask APf Box AP

cRT (ResNeXt-101-32×8d) [33] 27.2 19.6 26.0 31.9 —

LVIS Challenge 2020 Winner† [55] 38.8 28.5 39.5 42.7 41.1

ResNet-50 FPN (1024) 30.3 22.2 29.5 34.7 31.5

w/ Copy-Paste (+2.0) 32.3 (+4.3) 26.5 (+2.3) 31.8 (+0.6) 35.3 (+2.8) 34.3

ResNet-101 FPN (1024) 31.9 24.7 30.5 36.3 33.3

w/ Copy-Paste (+2.1) 34.0 (+2.7) 27.4 (+3.4) 33.9 (+0.9) 37.2 (+3.1) 36.4

EfficientNet-B7 FPN (1024) 33.7 26.4 33.1 37.6 35.5

w/ Copy-Paste (+2.3) 36.0 (+3.3) 29.7 (+2.7) 35.8 (+1.3) 38.9 (+3.7) 39.2

EfficientNet-B7 NAS-FPN (1280) 34.7 26.0 33.4 39.8 37.2

w/ Copy-Paste (+3.4) 38.1 (+6.1) 32.1 (+3.7) 37.1 (+2.1) 41.9 (+4.4) 41.6

Table 7. Comparison with the state-of-the-art models on LVIS v1.0 object detection and instance segmentation. Parentheses next to our

models denote the input image size. † We report the 2020 winning entry’s result without test-time augmentation.

Setup (single-stage) AP APr APc APf

Eff-B7 FPN (640) 27.7 9.7 28.1 35.1

w/ RFS 28.2 15.4 27.8 34.3

w/ Copy-Paste 29.3 12.8 30.1 35.7

w/ RFS w/ Copy-Paste 30.1 18.4 30.0 35.4

Table 8. Single-stage training results (mask AP) on LVIS.

line of EfficientNet-B7 FPN with 640×640 input size. We

observe that Copy-Paste augmentation outperforms RFS on

AP, APc and APf, but under-performs on APr (the AP for

rare classes). The best overall result comes from combin-

ing RFS and Copy-Paste augmentation, achieving a boost

of +2.4 AP and +8.7 APr.

Copy-Paste improves two-stage LVIS training. Two-

stage training is widely adopted to address data imbal-

ance and obtain good performance on LVIS [37, 46, 55].

We aim to study the efficacy of Copy-Paste in this two-

stage setup. Our two-stage training is as follows: first we

train the object detector with standard training techniques

(i.e., same as our single-stage training) and then we fine-

tune the model trained in the first stage using the Class-

Balanced Loss [8]. The weight for a class is calculated by

(1−β)/(1−βn), where n is the number of instances of the

class and β = 0.999.5 During the second stage fine-tuning,

we train the model with 3× schedule and only update the

final classification layer in Mask R-CNN using the classifi-

cation loss only. From mask AP results in Table 9, we can

see models trained with Copy-Paste learn better features for

low-shot classes (+2.3 on APr and +2.6 on APc). Interest-

ingly, we find RFS, which is quite helpful and additive with

Copy-Paste in single-stage training, hurts the performance

in two-stage training. A possible explanation for this find-

ing is that features learned with RFS are worse than those

learned with the original LVIS dataset. We leave a more de-

tailed investigation of the tradeoffs between RFS and data

augmentations in two stage training for future work.

5We scale class weights by dividing the mean and then clip their values

to [0.01, 5], as suggested by [37].

Setup (two-stage) AP APr APc APf

Eff-B7 FPN (640) 31.3 25.0 30.6 34.9

w/ RFS 30.1 21.8 29.7 34.1

w/ Copy-Paste 33.0 27.3 33.2 35.7

w/ RFS w/ Copy-Paste 32.0 26.3 31.8 34.7

Table 9. Two-stage training results (mask AP) on LVIS.

Comparison with the state-of-the-art. Furthermore, we

compare our two-stage models with state-of-the-art meth-

ods for LVIS6 in Table 7. Surprisingly, our smallest model,

ResNet-50 FPN, outperforms a strong baseline cRT [33]

with ResNeXt-101-32×8d backbone.

EfficientNet-B7 NAS-FPN model (without Cascade 7)

trained with Copy-Paste achieves comparable performance

to LVIS challenge 2020 winner on overall Mask AP and

Box AP without test-time augmentation. Also, it obtains

32.1 mask APr for rare categories, outperforming the LVIS

Challenge 2020 winning entry by +3.6 mask APr.

5. Conclusion

Data augmentation is at the heart of many vision sys-

tems. In this paper, we rigorously studied the Copy-Paste

data augmentation method, and found that it is very effec-

tive and robust. Copy-Paste performs well across multi-

ple experimental settings and provides significant improve-

ments on top of strong baselines, both on the COCO and

LVIS instance segmentation benchmarks.

The Copy-Paste augmentation strategy is simple, easy to

plug into any instance segmentation codebase, and does not

increase the training cost or inference time. We also showed

that Copy-Paste is useful for incorporating extra unlabeled

images during training and is additive on top of successful

self-training techniques. We hope that the convincing em-

pirical evidence of its benefits make Copy-Paste augmenta-

tion a standard augmentation procedure when training in-

stance segmentation models.

6https://www.lvisdataset.org/challenge_2020
7We find using Cascade in our experiments improves APf but hurts APr.
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